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STUDENTS ENCOUNTERING OBSTACLES USING A CAS

ABSTRACT. The paper describes a pilot study on the use of computer algebra at upper
secondary level. A symbolic calculator was introduced in a pre-examination class study-
ing for advanced pre-university mathematics. With the theoretical framework of Realistic
Mathematics Education and Developmental Research as a background, the study focused
on the identification of obstacles that students encountered while using computer algebra.
Five obstacles were identified that have both a technical and a mathematical character. It
is the author’s belief that taking these barriers seriously is important in developing useful
pedagogical strategies.
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INTRODUCTION

During the last decade the availability of computer algebra environments
has increased dramatically, not least because of the development of hand-
held symbolic calculators to which students now have access. A further
diffusion of Computer Algebra Systems (CAS) is to be expected.

Educational researchers and teachers are concerned with fundamental
questions that arise as soon as computer algebra is integrated into the
teaching and learning of mathematics. How can the use of a CAS improve
conceptual understanding? How might a CAS affect the curriculum? What
is the role of paper-and-pencil skills in a computer algebra environment?
What prerequisite knowledge and skills are required for students to benefit
from the availability of computer algebra? A more elaborated list of such
guestions can be found in Drijvers (1997).

Many studies have been undertaken to answer (parts of) these ques-
tions, as indicated by the overview provided by Mayes (1997). In the
Netherlands, the Freudenthal Institute carried out a pilot study on the role
of the symbolic calculator in 1998. This project was a natural follow-
up of research on the integration of graphing calculators in mathematics
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education (Drijvers and Doorman, 1997). This paper presents some of the
findings of the study, whose main result is the identification of obstacles
that students encounter while working with a CAS.

This paper first summarizes some findings from previous research that
are relevant to the present study. Then, the relation between the theory of
Realistic Mathematics Education and computer algebra is discussed. The
research question, the methodology and the instructional units are briefly
presented. The longest section of the paper contains examplary classroom
observations that will lead to the identification of obstacles that students
encountered while working with the symbolic calculator. A discussion and
a conclusion complete the article.

PREVIOUS RESEARCH

In this section some studies that are of particular interest for the scope of
this paper are briefly presented.

For some years the white-box/black-box issue dominated the discussion
about the pedagogy of computer algebra. Buchberger (1989) suggested
that students should use computer algebra only for tasks that they are able
to readily perform by hand. It is not until a new subject has been mastered
manually that computer algebra can be used to carry out the (now trivial)
work that has to be done. Computer algebra, then, is used as a black box,
that can be opened by the students, if they would like to do so, because they
know ‘what’'s behind’ it. This white-box/black-box sequence, however,
can be inverted. Proponents of the black-box/white-box approach use a
computer algebra system as a generator of examples and as an exploratory
tool that may elicit curiosity and can lead to interesting discoveries (see
Drijvers, 1995, for an overview of this discussion).

As one of the first studies in this domain, Heid (1988) showed how a
CAS can be used to facilitate the development of mathematical concepts.
Subjects of the experiment were first year university students enrolled
in a calculus course. The experimental condition consisted of the use
of a CAS to build up the concept of the derivative by means of using
graphs, combining representations etc. Techniques of differentiation were
not taught until the end of the course. The students showed a good concep-
tual insight of the derivative and performed not worse than the control
group on the technical part of the post-test. The results of this ‘concept-
first’ course indicate that the development of concepts can precede the
learning of techniques. Heid suggests that the use of a CAS might provoke
a resequencing of concepts and skills in mathematics courses.
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As soon as plotting devices such as graphing calculators entered educa-
tion, it became clear that students may have difficulties in interpreting
graphical representations as they appear on a screen (e.g. see Golden-
berg, 1987; Hillel et al., 1992). In the same line but more generally, Guin
and Trouche (1999) point out the confusion that students can experience
when they are not able to distinguish between a mathematical object
(not restricted to graphs) and its calculator representations. They provide
a detailed description of the process of instrumentation — the so-called
‘instrumental genesis’ — of a computer algebra tool that students need to
go through. The growing awareness of the constraints and the potentials of
the CAS tool are important parts of this process.

Related to the work of Guin and Trouche are the studies of Lagrange
(19994, 1999b). Using the terminology of Verillon and Rabardel, Lagrange
stresses the importance of instrument utilisation schemes that are built
up by both individual and social genesis. He gives a detailed example of
such a scheme that students develop for finding the variation of a func-
tion. He suggests that the technical aspect of doing mathematics does not
disappear in a technology environment: paper-and-pencil techniques may
lose importance but machine techniques are becoming more important
instead.

The research reviewed above serves as a frame of reference for the
present study, and will be referred to when appropriate.

REALISTIC MATHEMATICS EDUCATION AND COMPUTER
ALGEBRA

The domain specific theory of Realistic Mathematics Education (RME)
forms the theoretical background of this study. This instruction theory has
acquired considerable impact in The Netherlands during recent decades.
According to this theory, mathematics is considered as a human activity
(Freudenthal, 1991). Van Reeuwijk (1995) provides the following charac-
teristics of Realistic Mathematics Education: ‘real’ world, free productions
and constructions, mathematization, interaction and integrated learning
strands. These points may need some explanation.

e ‘Real world
Learning of mathematics starts from problem situations that students
perceive as real or realistic. These can be real life contexts, but they
can also arise from mathematical situations that are meaningful and
natural to the students. The word ‘real’ thus refers to ‘experientially
real’ rather than to ‘real world’. The didactical phenomenology of the
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topic provides adequate contexts that serve as a start of the learning
process.

e Free productions and constructions
Students should have the opportunity to develop their own informal
problem solving strategies that can lead to the construction of solution
procedures. The models that they develop will gradually turn into
generic models for a class of situations. This ‘bottom-up’ reinvention
process is guided by the teacher and the instructional materials. The
concept of guided reinvention is essential in RME.

e Mathematization
Organising phenomena by means of progressive mathematization
is important in the learning of mathematics. Usually two types
of mathematization are distinguished: horizontal mathematization
which refers to modelling the problem situation into mathematics and
vice versa, and vertical mathematization, which refers to the process
of reaching a higher level of mathematical abstraction.

e Interaction
Interaction among students and between students and the teacher is
important in RME, because discussion and co-operation enhance the
reflection that is essential for the mathemization process.

e Integrated learning strands
In the philosophy of RME, different mathematical topics should be
integrated in one curriculum. The student should develop an inte-
grated view of mathematics, as well as the flexibility to connect
the different sub-domains. Note that in real life, phenomena are
integrated in a context as well.

This list shows that the theory of RME is more than just saying ‘use real
life contexts in mathematics education’. Although a ‘real’ life context
can be an important starting point for mathematization, the main points
here are the processes of reinvention and mathematization. An extensive
discussion of the theory of realistic mathematics education can be found
in Freudenthal (1991), De Lange (1987) and Treffers (1987).

Now what are the implications of these general principles of realistic
mathematics education for the use of a computer algebra device in class?
On the one hand, one might hope that the availability of a CAS could help
the ideas of RME become a reality in the classroom. The theory of RME
on the other hand caa,priori, point out some risks in using a CAS in the
learning process. This twofold relationship between RME and CAS needs
a closer look.

The idea of technology as a catalyst for the realization of RME is
not new. Drijvers and Doorman (1997) described the potential use of the
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graphics calculator for more realistic contexts, for concentrating on the
process of mathematization, for exploration, integration, flexibility and
dynamics. Based on the theory of RME and on classroom experience, |
extrapolated these ideas to the computer algebra environment. This lead to
the following three conjectures on the possible benefits of using computer
algebra to realise the goals of RME.

Horizontal mathematization

Using a computer algebra device enables the students’ attention to shift
from purely algorithmic operations to the translation of realistic problems
into mathematical models and to the interpretation of the results with
respect to the context. Freeing the student from technical work may open
the way for this two-directional horizontal mathematization. This holds to
a further extent with CASs than with other technological tools because of
the algebraic facilities that enable solution strategies to match more closely
to what students are used to.

Exploration

Because of its direct feedback, the computer algebra tool offers opportuni-
ties for exploratory activities. Discovery and classification tasks can lead
to findings, which then, through reflection and generalization, result in
the reinvention of properties or theorems. The CAS can evoke vertical
mathematization in a way similar to other technological devices that can
serve as investigation instruments but, again, the algebra inside the system
provides new and possibly powerful opportunities to include also algebraic
techniques.

Flexible integration of different representations

Using a CAS enables the student to switch easily between mathematical
representations such as graphs, tables and formulae. This can lead to
a more integrated and flexible use of these representations that will be
perceived as different but related faces of the same die. The sophisticated
way of representing and editing formulas are not exclusive to a CAS, but
are often weak points in other technological tools.

Now the opposite perspective: what possible conflicts between the theory
of RME and the phenomenon of computer algebra can be expected to
arise? A priori, the most important dangers seem to be threefold.

Top-down tool
Because a CAS contains so much mathematical expertise, a risk of using
it for an educational purpose is that results are obtained in a top-down
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manner. Everything ‘is already there’, is already invented. This may
frustrate a student’s motivation for construction and reinvention, unless
adequate didactical measures are taken.

Black box

Usually, a CAS does not give insight into the way its results are obtained.
The software is a black box that does not show the methods it uses. These
methods are often, even in simple problems, far more sophisticated than
the methods students would use themselves. This may become manifest in
unexpected outcomes or representations of results. Clearly, the CAS does
not support elementary or informal strategies.

Idiosyncrasy

As a tool for the apprentice user, a CAS is not very flexible. Input
requires strict syntax and output can be presented in unfamiliar ways. The
‘CAS-language’ is different from mathematical and natural language, and
the system does not allow informal language. Each CAS has its rules,
constraints and habits. Thus, students may perceive a CAS as an idiosyn-
cratic tool instead of a flexible and natural instrument that can deal with
their own informal notations and strategies. This makes the ‘instrumental
genesis’ (Guin and Trouche, 1999; Lagrange, 1999a) a difficult process.

RESEARCH QUESTION

The integration of computer algebra in a RME educational setting seems to
have its complications. The black-box aspect, already mentioned by Buch-
berger, may be in conflict with the reinvention principle. Furthermore, the
problems with the instrumentation process, as reported by Lagrange and
Guin and Trouche, are factors that have to be taken into account. On the
other hand, studies such as Heid’s research give reason to hope that there
are some benefits to using a CAS.

This paper takes the ‘negative’ perspective and concentrates on the
obstacles of using a CAS in a RME setting. This does not mean that | do
not believe in the possible benefits of CAS use. Rather, it is necessary to
be conscious of the difficulties. Recognition of students’ obstacles is a first
step to finding ways to deal with them, and can lead to the identification of
prerequisite knowledge and skills for meaningful use of computer algebra.
Identifying obstacles is useful in determining to what extent the dangers
really exist. The central research question, therefore, is:



STUDENTS ENCOUNTERING OBSTACLES USING A CAS 195

What obstacles do students experience while working with
computer algebra?

First, what is considered to be an obstacle? In the classroom experiment
that is reported below, students perform horizontal mathematization and
shift between ‘real’ life situations and mathematical translations. The CAS
can do the procedural mathematical work. This requires going through an
instrumentation process. An obstacle, now, is a barrier provided by the
CAS that prevents the student from carrying out the utilisation scheme
that s/he has in mind. As a result, the obstacle stops the process of
shifting between the ‘pure’ mathematics and the problem situation. Such
obstacles can be technical, but they often have a mathematical or concep-
tual component. Language too can be involved: changing vocabulary or
notation can be (part of) an obstacle.

METHODOLOGY AND DESIGN

As a research paradigm, the developmental research method was used
(see Gravemeijer, 1994). This methodology has similar characteristics to
the theory of RME: In interaction with the ‘real-life’ classroom situation,
the researcher tries to ‘reinvent’ the theory by means of constructing
and developing thought experiments and educational experiments. This
involves a cyclic process of consideration and testing, an alternation of
thought experiment and educational experiment. Developmental research
design typically makes use of qualitative, close-to-the-students, observa-
tions. Another characteristic of developmental research is that students’
erroneous behaviour is seen as a source for further development of the
theory and the educational experiment. The latter characteristic is well
suited to the research question on obstacles.

The educational experiment in this study took place in a pre-
examination class studying advanced pre-university level mathematics.
The class consisted of 22 students — 8 female, 14 male — all about 17
years old. The computer algebra platform they used was the symbolic
calculator TI-92. The main reason for that was the practical advantage of
not having to go to a computer lab, where PC’s usually dominate the educa-
tional setting. The fact that the students already owned a TI-83 graphing
calculator for more than a year was a factor in making this choice: it was
believed that the similarities between the interfaces of the two machines
would facilitate the students’ introduction to the TI-92.

The students received a TI-92 for a four week period. There were four
50-minute mathematics lessons each week. During these lessons, students
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worked in pairs for a significant part of the time. Bearing in mind the rele-
vance of interaction in the theory of RME, the partners were stimulated to
work together and to communicate on what each of them was doing with
their ‘personal’ machine. Every lesson, one pair used a TI-92 that was
connected to a viewscreen in order to have the screen video-taped. These
pairs were alternated throughout the experiment. A side-effect of this was
that the other students could also see what “today’s victims” were doing.
During classroom discussions — also very important in the light of interac-
tion and reflection! — the teacher often asked this pair to do the calculations,
so that all students could see it. This is what Guin and Trouche recommend
as the '‘Sherpa-student’ role (Guin and Trouche, 1999). The teacher himself
did not use the machine or the viewscreen during the lessons.

Data was gathered by means of participating classroom observations
and interviews. Complementary to this qualitative data were the results
of pre- and post-tests and a questionnaire. Qualitative data were inter-
preted and scored by means of classification in different categories, with
reliability checked by the three observers.

DEVELOPING INSTRUCTIONAL UNITS

Two instructional units were developed for the classroom trial: ‘Introduc-
tion to the TI-92’ and ‘Optimization using a symbolic calculator’. The
purpose of the first unit was learning how to perform the most important
calculations on the TI-92. In the meantime, some problems focused on
specific aspects that one encounters when working with a CAS, such as
numerical versus exact calculations, equivalence of expressions, rewriting
expressions, substitution and finding general solutions. An investigation
task formed the end point of the unit. This reflects the RME-idea that
students need to have room for exploration and for construction in order to
build up their own theory. The investigation task resulted in written reports
that were presented to the class.

The second unit cannot be understood without some comments on the
prerequisite knowledge the students had when entering the experiment.
At the start of the school year, the students had worked through a unit
called ‘Sum and difference, distance and speed’ (Kindt, 1997). This unit
is about the principles of differentiation and integration that are developed
simultaneously. The concept of the derivative is introduced using the rate
of change: the context of speed in a time-distance graph gradually develops
into a more generic model for the concept of the derivative. In a similar
manner, the integral is introduced as the distance travelled in a time-speed
graph. After that, the students learned how the derivative can be used to
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find extreme values of functions. The only functions they could differen-
tiate manually, however, were power functions. No derivatives of rational
or trigonometric functions, nor any rules for differentiation were in the
students’ repertoire yet.

Several ideas from the theory of RME guided the development of the
unit ‘Optimization using a symbolic calculator’, a revision of an existing
unit ‘Optimization using a graphing calculator’. A central concept is
the modelling of Real lifé situations into optimization problems. This
involves horizontalmathematization A second concept is the relation
between the extreme value of a function and the zeros of the deriva-
tive. Because the symbolic calculator does the technical part of the
work, the student can concentrate on this concept and owdhstruc-
tion of a problem solving strategy. Optimization problems often can be
solved in various ways: numerically, with graphs, with algebra/calculus
and with geometry. By means of mixing up all these methods, the unit
aims atintegration of the approaches and increasing the flexibility of the
student. Technology (i.e. hand held computer algebra) can support flexi-
bility in problem solving methods, because it takes over a great part of the
manipulative work.

The concept of the derivative as a ‘rate of change’ has been taught to
the students, but they do not yet know how to apply the rules for differen-
tiation. They are forced to leave the derivation of the functions that model
the optimization problems to the symbolic calculator. Computer algebra
thus serves as a ‘black box’ that may motivate the students to learn the
rules after the experiment is finished. The inversion of the usual order of
the course was inspired by Heid's resequencing. In this case, however, the
work is not preparing for a conceptual understanding of the techniques of
applying rules for differentiation. The aim is, on the one hand, to allow
students to concentrate on modelling and on problem solving strategy, and
on the other to investigate students’ reactions to this black box approach.

Figure 1 provides an overview of the unit with brief descriptions of the
core of each chapter. In the first chapter the students work on the optimiza-
tion of the area of a rectangle with a given perimeter. Equal division of
the perimeter turns out to provide the optimal area. The second chapter
concentrates on the problem of the railway station that is presented later in
this paper where graphical, numerical, analytical and geometrical methods
are used. In chapter 3, students work on several variations of the problem
from chapter 1, where again different methods can be used. Generalisa-
tion takes place to problems with parameters instead of numbers, and the
railway station problem is extended to the situation of the refraction of
light entering a different medium. As in the first unit, investigation tasks
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1. A classical problem
equal division gives
optimal product

Y
2. Where to build 3. Perimeter, surface 4. James Bond and
the railway station? and content Snellius law
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5. Investigation tasks
> -

function of two variables
general solutions

Figure 1. Overview of the unit ‘Optimization using a symbolic calculator’.

conclude this unit, one of which is the problem of the pipe in the corridor
that is presented later.

EPISODES OF STUDENT BEHAVIOUR

This section contains five episodes that describe how students behaved in
the classroom. They are prototypical in as much as similar behaviour was
observed regularly. The significance of these observations is that they give
insight into obstacles that students might experience while using a CAS.
Each episode is used to formulate such an obstacle.

What Is a Simple Algebraic Representation?

Figure 2 illustrates a problem situation. A railway stat#is to be situated

on the railroadCD so that the total distance from the station to the two

cities A andB will be minimal. Where should this railway station be built?
Students typically reacted like this:

DS = x
BS V10 + x2
AS = 52+ (12— x)2
The total distance is equal to AS + BS. Students type in the expressions

and differentiate the total distance function with respect {see Figure
3)

The last part of the unit contains the solutions to the exercises. In order
to link the algebraic form to the ‘map’ in Figure 2 and to the way ‘experts’
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Figure 2. Where to build the railway station?
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% - 12 X
+
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MAIN RAD AUTD FUNC_1/30

Figure 3. TI-92 screen for the railway station problem.
differentiateASby hand, the left part of the derivative of y3 is represented
in the solutions as:

(12— x)
V5 + (12— x)?

One of the students noticed the difference and reacted during the classroom
discussion:

Irene: In the back of the booklet it says something else, there is a minus in front.
Teacher: (changes  12) in —(12 — Xx) at the blackbord) Is that the same?

Irene: mmmno

Teacher: Is 5-3/4 the same as 5 +3/4?

Irene: Yes ...Oh yes. But that is clumsy, to put the minus in front, isn’t it?
Teacher: Then I'll put a + again for you.

Even after this explanation, some students still have difficulties with this.

Teacher: Is 12- x the same az — 12?
Dennis: No.

Teacher: What is it then?

Dennis: | don't know.

Teacher: If 12— x = 3, what is therx — 12?
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Dennis: minus 3, 9- 12
Teacher: Could you see that immediately, without substituting the 9?
Dennis: Oh yeah, it is the opposite.

The students clearly had difficulties in understanding that the two formulas
were equivalent. (By the way, the denominator looked different as well.)
The way the CAS represented the solution was different from the represen-
tation that the students considered as the most simple, as it was the result of
their horizontal mathematization of the problem situation. In order to solve
this, students were not taught to check the equivalence by substitution of
numbers or by simplification, but to try to ‘see’ the equivalence. This,
however, was difficult for them.

Generally speaking, the computer algebra routines have their own
‘context free’ rules for simplifying expressions, that may not result in
what the student considers to be the most simple representation in a
specific situation. Coping with this requires mathematical expertise. For
instance, students should know how to check whether two expressions
are equivalent or not. Furthermore, they should develop ‘an eye’ for the
way a CAS operates while determining the algebraic representation, so
that some representations become ‘logical’ to the student. This episode
suggests a first obstacle:

Obstacle 1 is the difference between the algebraic representations
provided by the CAS and those students expect and conceive as
‘simple’.

Exact and Decimal Numbers

Continuing the problem of the railway station shown in the previous
section, students wanted to calculate the zeros of the derivative. The ‘old’
TI-92 that these students had —without ‘Plus-module’ — solves the equation
in AUTO-mode tox = 8. (see Figure 4). Here the students usually did not
notice the point behind the 8, an idiosyncratic representation indicating
an approximate result. In EXACT-mode, the machine returned an empty
solution set. The current TI-92 does solve this equation in exact mode.
The following dialog took place:

Niels: The textbook says | should get an approximated

result. Why don't | have that?

Teacher: You have it. Look: the result is 8.; that means 8.00000000
Niels: But ... how &aout the zeros?

Teacher: It just doesn’t write them.

Clearly, the way the TI-92 presents the result is confusing. But there is
more. To some students, using a calculator means obtaining a numerical
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Figure 4. The approximate solution.
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Figure 5. Helping the machine to find an exact solution.

result. Some students even put their machine in APPROXIMATE-mode,
as they were frustrated by the fractions they got while performing calcula-
tions during physics and chemistry lessons. Even returning to AUTO-mode
after realizing the disadvantages of APPROXIMATE for the mathematics
course, the students had difficulties in dealing with the different ways of
calculating.

Sometimes a CAS performs exact, algebraic calculations and some-
times it makes approximations. A single command can thus evoke two
conceptually different methods. In order to understand the ‘status’ of a
result, students have to be conscious of this. They should be able to classify
the CAS output in this respect, know how to influence this and how to
choose between the two approaches. This suggests a second obstacle:

Obstacle 2 is the difference between numerical and algebraic calcu-
lations and the implicit way the CAS deals with this difference.

Helping the Machine

Again continuing the railway station example, students still wanted to find

the exact zeros of the derivative, but they did not know how to achieve this.
In order to ‘help the machine’, it was suggested to square the two parts of
the derivative. This yields two exact solutions (see Figure 5), one of which

is due to the squaring.
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Students often did not know what to do when the symbolic calculator
did not give an answer. Finding out how to ‘help the machine’ to overcome
its limitations was not an easy thing for them. They did not have the feeling
that they might try to help the machine by specifying a domain, by squaring
to get rid of roots, by choosing another precision mode and so on.

For optimal help, the user should have an idea of why the machine
does not do what it is meant to, and of a step that might take them in the
right direction. This requires an understanding of algebraic strategies and
suggests a third obstacle:

Obstacle 3 is caused by the limitations of the CAS and the difficulty
in providing algebraic strategies to help the CAS to overcome these
limitations.

What Can Computer Algebra Do for You?

Related to the third obstacle is the fact that students are not always aware
of the algebraic power of the tool that they have in their hands. Taking
advantage of this is not as obvious as it may seem, as is shown in the
following observation.

In the first investigation task factorial numbers are considered. The
question is how one can find out how many zeros there are at the end
of a factorial number without having to calculate it. This task was found
in Trouche (1998) who gives a detailed description. Two boys, Dennis and
Niels, were developing a (beautiful!) procedure that would calculate the
number of zeros at the end gf They discovered that one has to divide
x by the subsequent powers of 5, and then add up the integer parts of the
outcomes. They entered:

—Nint( X2
yil(x) = ;mt(sk)

They did not know what to fill in as the upper boundary of the summation.
First, they tried infinity, “certainly enough”, as they said. Unfortunately,
the TI-92 did not accept this. Then they took 20 as an upper limit, which
worked “as long as< is not too big”. Too big, they realized, meant
exceeding &. Thinking about this, they found out that the upper bound
should be the biggest n, so that 8oes not exceed However, they were
unable to solve B= x for n by hand.

Dennis: We want to chooseso thatx exceeds B. Then you have to do something with
logarithms?

[Dennis enters log) and the result is Ing/In(10).] Dennis: What is In?

Teacher: Do you know what the number e is?
Dennis: Yes, isn't that the thing that makes decades?
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He probably thought of E in the scientific notation that the TI-92 uses.

They triedx!/>, and this seemed to work, although this was not the
solution of the equation, as they knew. The point here is, that in spite of
(or maybe because of?) the quite sophisticated work they were doing, they
did not realize that the TI-92 would easily solve this equation for them!

On the other hand, students can expect too much. In order to find the
maximum value of a function, a student entered y1(solve(d(y1(x),x)=0,x)).
Unfortunately, the TI-92 does not support this short-cut.

Generally speaking, students do not always realize what computer
algebra can do for them. This observation provides an example of not
using the solve-command to isolate a specific variable. In order to improve
this, students have to develop a clear view of what they can expect from
the CAS. Maybe this requires a thorough familiarity with the algebraic
potential of the tool that the students in this study did not have yet.
After one year, the graphing calculator had become an integrated part of
(school)-life for many of the students. The symbolic calculator in this
short period had not. Computer algebra is a more complex phenomenon
than a graphing calculator. This suggests a fourth obstacle:

Obstacle 4 is the inability to decide when and how computer algebra
can be useful.

Students do not appear to consider isolating one variable in an equation as
solving it: solving means calculating a numerical result. This difficulty of
using the symbolic calculator for algebraic manipulations appears to link
with students’ understanding of the concepts of variables and parameters.
This is taken further in the next section.

Parameters and Variables

The restricted conception of solving an equation is also revealed in
the example below. It indicates that some students had problems in
understanding the role of variables and parameters.

Consider the well-known problem of a pipe that is to be carried hori-
zontally around the corner of a corridor. The question is: How long can
the pipe be? After concrete dimensions were given, the situation was
generalized to corridors of dimensiopsand g meters (see the left part
of Figure 6).

The final question was to express the maximal length of the pipe that
can pass in terms g andg. Dennis and Niels started like this (see the
right part of Figure 6) on paper:
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Figure 6. The pipe in the corridor.

BC = x

CE = /x24 42
Then they realized that triangl€BE is similar to CAF. The factor of
multiplication is

X+p
X

SO
X
CF:ﬂ /x2+q2
X

Before this, they had entered these functions for specific values in the TI-
92. While they were working, the teacher passed by and suggested that
they made these functions more generic:

Teacher: You can ugeandqin yl and y2, and then give andq the values you want.
Dennis: (some time later) That goes very nice, with fhahdq and then give values. We
make the function super-general!

However, although they succeeded in solving the problem in termarad
g, they did not include this in their report. During the classroom discussion
afterwards, it became clear why:

[The teacher asks Dennis to explain his method. He wants Dennis to give the general
solution, but Dennis says he can't:]

Dennis: You first have to fill in values fgrandq, don't you?

Teacher: You can also solve immediately. Then you get the answer expregsaadq.

As in the previous section, the interpretation of ‘solve’ is too narrow.
Strictly speaking, this is not an obstacle encountered while performing an
instrumentation scheme: the scheme was performed quite well. It is more
the inability to deal with the results, and the difficulty of interpreting them
correctly.
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Of course, conceptual difficulties with variables and parameters are
much older than CAS'’s; they exist independently from computer algebra.
Much has been said about the different roles letters can play and the
conceptual difficulties that students have with them (e.g., see Sfard and
Linchevski, 1994; Warren, 1999).

But what is the specific role of a CAS in this? Is the computer
algebra environment just making the difficulties with variables and
parameters more explicit? | would say it is inherent in the use of symbolic
manipulation software that variables and parameters appear in a more
abstract context that enlarges possible misconceptions. As Usiskin (1988)
pointed out, letters in a CAS are not placeholders for numbers, but just
symbols. To the program, “all letters are equal” and one can operate with
them very flexibly. For the user, this often is not the case. Adequately
operating with symbols using computer algebra requires that students are
aware of this, and that they really understand the concept of variables and
parameters. Managing a CAS probably requires that the algebraic insight
of the students is at the ‘symbolic level' (see Harper, 1987). This suggests
the last obstacle:

Obstacle 5 is the flexible conception of variables and parameters that
using a CAS requires.

RELATING THE OBSTACLES TO RME

From the analysis of students’ experience while working with computer
algebra the following list of obstacles can be drawn up:

1. The difference between the algebraic representations provided by the
CAS and those students expect and conceive as ‘simple’.
2. The difference between numerical and algebraic calculations and the
implicit way the CAS deals with this difference.
3. The limitations of the CAS and the difficulty in providing algebraic
strategies to help the CAS to overcome these limitations.
. The inability to decide when and how computer algebra can be useful.
. The flexible conception of variables and parameters that using a CAS
requires.

(20

These five obstacles are related to each other and have a common dual
nature: there is a technological, machine-related component, but dealing
appropriately with them also requires mathematical insight. Only the fifth
obstacle can be considered as primarily mathematical; there, the existing
lack of insight becomes more explicit while using a CAS.
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Earlier, the possible pitfalls of using a CAS to realise the goals of
RME were characterized by the words top-down tool, black box and
idiosyncrasy. How do the obstacles above relate to these dangers?

The first obstacle, simplification, can indeed be considered as a result of
the top-down behaviour of a CAS. It is difficult to influence the way a CAS
simplifies expressions. Furthermore, the representations that the students
would choose are related to the problem situation. The ‘real’ meaning of
an algebraic expression is situated in the context. This CAS-representation,
that is inappropriate (i.e. not natural) in relation to the context, may inhibit
the two-directional process of horizontal mathematization. There is also an
aspect of idiosyncrasy in this obstacle: the machine has its own rigid and
sometimes seemingly illogical ways of rewriting expressions. Expertise
is required to overcome this. The implicit way in which the TI-92 deals
with numerical versus algebraic calculations is another example of the
idiosyncrasy of the machine, although, in this case, not a hard one to
overcome.

Generally speaking, students often have to ‘come to the machine’
instead of the other way around. That is also the case in the third obstacle:
mathematical flexibility is needed in order to overcome CAS limitations; a
sort of flexibility that requires much expertise in the field. It would be inter-
esting to know whether students with a RME-background would do better
at this point than students with a more traditional approach to mathematics
education.

The fourth obstacle has much to do with the process of instrumenta-
tion. Considering the concept of schemes, the schemes that are involved
here seem to be of a higher order than those mentioned by Lagrange: the
capacity to find out how the tool can be useful is a ‘meta-skill’ compared
to the ability to perform a specific utilisation scheme correctly.

The three ‘RME-dangers’ do not seem to account for the difficulties
with variables and parameters. One might hope that previous experience
of dealing with variables and parameters in a flexible and meaningful way
would facilitate adequate handling in the CAS environment.

The presumed black-box character of computer algebra was not a direct
obstacle while performing a utilisation scheme. At times, however, it
seemed to be a somewhat emotional obstacle for some of the students who
found themselves not very happy leaving differentiation to the machine.
They did not know how the calculator ‘did it’ and were not able to check
the results manually. An illustrative quotation:

[Esther solved an optimization problem graphically.]
Observer: It can also be done with differentiation.
Esther: But | cannot differentiate this function yet.
Observer: But the machine can.

Esther: Yeah, but then you don't know what you're doing!
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Apparently some of the students wanted the ‘boxes to be white’. This
tendency has to be taken quite seriously, first because it indicates a crit-
ical mathematical attitude, and second because uncomfortable feelings can
frustrate the learning process. With the theory of RME in mind, one can
wonder whether the reluctance to adopt this black-box approach has to do
with a lack of room for construction. No opportunities were created for the
development of the conception of the rules for differentiation. The process
of vertical mathematization on this point was, at least temporarily, ‘over-
ruled’ by the machine. Referring to Buchberger, one can wonder whether
the white-box/black-box approach was more natural than the inverse one
as it was followed now. After the experiment, when the students studied the
rules for differentiation without the machine, this omission was remedied.
The teacher considered the chosen sequence useful because the students
were really motivated to learn the rules of the differentiation technique
after the experiment; his opinion on this is close to the resequencing ideas
of Heid.

Although this paper focuses on the obstacles, it cannot end without
saying a word on what went well. Classroom observations not cited in
the examples indicated that students managed to solve optimisation prob-
lems in a meaningful way. They showed understanding of the concepts of
mathematizing optimisation problems and of the strategy of solving them.
The utilisation scheme of calculating the zeros of the derivative, close to
the one described by Lagrange (1999b), was managed adequately.

CONCLUSION

This research has extended to the algebraic representations of a CAS, as
studied by Goldenberg for situations of interpreting graphical representa-
tions of a graphing software, and by Hillel et al. for graphical represen-
tations in a computer algebra environment. All these previous studies
provide evidence that technological tools not only offer new possibilities
but also may create obstacles. For example, in the case of the graphical
tools the limited resolution of the screen and the dimensions of the viewing
window are well-known obstacles. Research on obstacles created by the
algebraic representations of a CAS environment was a natural next step.
The research of Lagrange was helpful in analysing the students’ instru-
mental behaviour, and Buchberger’s idea of white and black boxes helped
in the interpretation of students’ reluctance to use the computer algebra
device as a black box. In a similar manner, Heid’s concept of resequencing
was helpful in thinking of the structure of the learning trajectory.

The ‘risks’ of using computer algebra in mathematics education that
were identified by reference to the theory of RME were shown to some
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extent to have become reality. The top-down character of a CAS, its
black-box style and its idiosynchracies produced obstacles during the
performance of instrumentation schemes and during the interpretation of
the results.

Five obstacles were identified, (although there is no reason to assume
that this list is exhaustive). These obstacles encountered when using a
CAS have consequences for teaching. Although these consequences were
not within the scope of this study, | would like to conjecture on them.
Generally speaking, as a pedagogical strategy, my feeling is that teachers
should consider them seriously, pay attention to them and take advantage
of them by making explicit the mathematics behind them. Trying to avoid
these barriers might be counterproductive. Topics such as numerical and
exact calculations, simplification of formulae and roles of variables and
parameters deserve even more attention when a CAS is used than when it
is not. As far as the black box use of a CAS is concerned the consequence
of the experience in this study seems to be that one should be careful not
to leave the student with a feeling of dependence on the technological tool.
This may evoke the unpleasant feeling of working with an ‘oracle’ instead
of an instrument. A careful designed ‘instrumental genesis’ as described
by Lagrange and Guin and Trouche is worth considering.
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