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ABSTRACT. This paper describes a year-long study of the way a group o f  six 12-year-old 
children went about solving a special class of geometric problems, using a computer and a 
limited set of Logo programming tools. We examined children's solution strategies from the 
perspective of whether the strategies led to insights about the underlying mathematical 
relations. It was found that the "feedback" aspect of the computer graphics screen encouraged 
solution strategies that were qualitative and driven by visual data, rather than being based on 
explicit or implicit relations. These visually based strategies did not lead to the kind of 
mathematization of problem-situations that we as mathematics educators would like to see 
and, in fact, seemed to be a barrier to the development of higher levels of geometric thinking. 

I N T R O D U C T I O N  

In this paper we look at the way children go about solving a very special 
class of geometric problems, using a computer and a limited set of  
programming 'tools'. In particular, we examine the way the output on the 
screen seems to influence the actions taken by the solvers. The research 
originates from our initial study of  children's mathematics while using 
Logo (see Kieran, Hillel and Erlwanger, 1986) and out of our concern that 
children rely almost exclusively on visual cues from the output on the 
screen. Their Logo productions of geometrical figures often fail to account 
for some of the important underlying mathematical relations. Such a visual 
approach, which is initially very useful for gaining familiarity and ease with 
some difficult concepts (e.g. angle of  rotation and degree measure), seems 
to be, later on, a barrier towards gaining a higher level (in the van Hiele 
sense) of geometrical thinking. 

One may wonder to what extent such behaviour is an artifact of  a 
particular computer-based learning environment or whether it is more 
generally provoked simply by the existence of a graphics screen and a 
screen output. Originally, we felt that the 'visual schema' was a result of  the 
kind of  Logo environment which emphasizes children-generated projects 
and in which the 'exact' aspects of  a geometric figure are not, generally 
speaking, made very explicit. Hence, the criterion for accepting the correct- 
ness of  a program is a "more or less" correct screen figure and a visual 
solution schema is completely adequate. Consequently, we set out to see 
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whether changing the nature of the Logo environment by giving specific 
tasks, which implicitly contained certain geometric relations that had to be 
satisfied, would provoke a more 'analytical' solution schema. This did not 
turn out to be the case over the twenty sessions we conducted with 
twelve-year olds (see Hillel and Kieran, 1987). However, one aspect that 
emerged out of the research was the mismatch between our and the 
children's perception of what are the important underlying features of a 
given task. Often, the attributes of a given geometric figure that led us to 
its choice were ignored and other features were emphasized. For example, 
when we gave the children the figure 

chosen because of its 3-fold symmetry, they concentrated only on the 
reflection symmetry about the vertical axis. Consequently their solutions 
did not involve 120 ~ rotations nor any relation to 360 ~ . The lack of an 
analytical solution schema could also be related to the fact that the tasks 
we gave involved mainly angle relations which are still problematic for 
children of that age. 

In the research reported here we have taken another look at the way 
twelve-year olds solve highly structured geometric tasks. We differed in our 
approach from the previous study by being specific about the geometric 
relations that the tasks had to satisfy and by giving, during the first 12 of 
24 sessions, problems involving only length relations. Our rationale here 
was that children of that age would have no difficulty in dealing with exact 
length relations (e.g. sums and differences of lengths of several line seg- 
ments) and so they could attempt an analytical rather than a visually-based 
solution. Furthermore, the children were given a very limited repertoire of 
Logo commands. This meant that they could not solve the tasks, by 
resorting to the use of special programming 'tricks' which often have the 
effect of subverting the mathematics of the activity. 

Because of the specificity of the experimental situation, we begin the 
paper by first describing the setting and the tasks (section A). We follow 
with a detailed description of some solutions of one task from each of the 
three different types of tasks (section B). In section C, we discuss the results 
of the research and relate these to other works. 
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A. THE EXPERIMENTAL SETTING 

A.1. The Children 

The six children (four boys and two girls) were 12-12 1/2 years old. They 
were in two different grade six classes of an elementary school close to the 

university where the computer lab was situated. They were randomly 
picked from respondents to a letter requesting volunteers to participate in 
a 'computer project'. They were also asked, in the letter, to come in pairs 
since our intention was that they would work as partners. 

It should be said at the outset that most of  the children (particularly the 

boys) first came to the lab hoping to be able to play computer games. We 
had to negotiate the 'experimental contract' and make it clear that we 

wanted them to work, for most of  the time, on problems that we had 
chosen. We solicited a commitment on their part to come to the sessions 
regularly and we did promise at least one 'computer games' session during 
each term. Nevertheless, some of the boys remained somewhat reluctant 
participants and we often had to prod them to get started on a new task or 
to look back on their work from a previous session. Three of the boys 
showed up more sporadically after the Christmas break and stopped 

coming altogether after session # 20. 
Despite this seemingly negative attitude on their part we should emphasize 

that, once started on a problem, the children generally got very involved in 
trying to solve it. Particularly, we noticed a dramatic switch in the level of 
commitment when we split the pairs and let the children work on their own 
computers (starting at session # 3). For  example, Ben, who was up to then 
the least involved, worked on a task for a good part of an hour and was then 

heard saying "I  am going to get it right no matter how long it takes." 

A.2. The Available Logo Commands 

The children's Logo vocabulary consisted of six commands. The commands 
TEE, RECT and BASELINE produced the following geometric objects: 
- TEE :X a letter T with both its stem and bar having length X (X > 0) 

X 
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- RECT :X : Y a rectangle with dimensions X and Y (X > 0, Y > 0) 

u 

- BASELINE :X a horizontal line of length X (X > 0) 

X 

In all of  the above cases the underlying programs (hidden from the 
children) were state-transparent, i.e. the turtle returned to its initial position 

and orientation. 
The commands MOVE, TRT and TLT allowed for changes in position 

and orientation of the turtle, i.e. 
- M O V E  :X moved the turtle X steps (without changing its heading and 

without leaving a trace). The turtle moved forward if X > 0 and back- 
wards if X < 0. 

lr ,- 
" X 

- TR T :X rotated the turtle slowly to its right by X degrees (X > 0). 
- T L T  :X turned the turtle to its left. 

The children were also shown how to use the Editor and, during session 
# 8, the REPEAT command. We should emphasize that the geometric 
figures Tee, Rectangle and Baseline are very simple and are not, on their 
own, interesting geometric objects. Rather, they were chosen because they 
could be used as components of  other figures in such a way that the Logo 
productions of those figures would require a high level of coordination of 
inputs. This would not have been the case if the children had had access to 
the usual FD and BK commands. With such commands at their disposal, 
a visually-based estimate for inputs followed by adjustments usually would 
produce a reasonable solution. This point should be clearer when we 
discuss the tasks in the following section. 
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A.3. The Tasks 

Most of the tasks given to the children were highly structured in the sense 
that dimensions of different components of the figures had to be related in 
specific ways. These relations were either explicitly described when the tasks 
were given or had to be inferred from other specifically given constraints. 
Furthermore, some tasks such as the Baseline tasks (see Figure la below) 
also stipulated a specific starting point. 

Tasks with similar conditions were given at different times so as to enable 
us to observe changes in the approach to their solutions. They fell under the 
following broad categories: 

(i) BASELINE-TASKS includes those tasks which required a figure to be 
constructed on a fixed baseline (i.e. their productions had to be started with 
the procedure BASELINE). For example, the Tee-Tower task consisted of 
a tower of five congruent Tees sitting on a baseline (see Figure la). 

(ii) CENTRING-TASKS included tasks whichcontained, as one of their 
conditions, that one rectangle be centred relative to another (see Figure l b). 

(iii) ROTATION-TASKS included tasks involving n-fold rotational 
symmetry of a figure about a central point, e.g. the 3-Tee Rotation task (see 
Figure lc). 

T 
T 1 l T 

Fig. la Fig. lb Fig. lc 

We will analyze the characteristics of the tasks using, in slightly modified 
form, a previously developed framework for task analysis. Thus we view a 
task as a specific set of demands made on a solver which include mathematical/ 
programming demands, structural demands and psychological demands. 
The mathematical/programming demands refer to specialized, task-specific 
knowledge required to solve the task (e.g. solving equations or using 
recursion). The structural demands include the embedded relations, both 
overt and covert, that need to be coordinated, the untangling of the allowable 
operations, the sequencing of these operations, as well as the type of 'goal 
state' and the criterion for deciding that the 'goal state' has been reached. 
The psychological demands relate to the tendency of a problem to create an 
inhibiting "set" (see Hillel and Wheeler, 1981, for further elaboration). 
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Mathematical~programming demands: Neither the Baseline nor the Cen- 
tring tasks seem to make any specific mathematical demands. The Rotation 
tasks require the notion of 360 ~ as a complete rotation. 

Since all the tasks involve simple geometric figures their solutions, from 
a programming perspective, are also extremely easy. The difficulties do not 
lie in constructing the defining programs nor in the use of variables, but in 
the choices of inputs to the commands BASELINE, RECTANGLE, MOVE 
and TRT. (We did not expect productions to fail because of programming 
errors and when these did occur, they were ignored in the subsequent 
analysis. In most cases, the children's initial productions resulted in outputs 
which were not far from the goal figure.) 

Structural demands: The "weight of difficulty" for these tasks resides in 
this category, particularly in the embedded relations. Their solutions require 
that inputs to the different commands satisfy explicitly-given conditions 
("all the Tees have same size") as well as relations which are the results of 
other, geometrically described, constraints ("the Tee-tower has to sit 
properly on the Baseline"). 

T 

�9 Fig. 2a 

. . . .  

$ 

r l  ! 
Fig. 2b Fig. 2c 

For example, in Figure 2a, the input r to the procedure TEE has to be 
related to the input b to BASELINE (in fact, r = b/2), while in Figure 2b, 
the geometrical requirement of centring the smaller rectangle needs to be 
reformulated in terms of an input to MOVE which satisfies the relation 
r = (s - w)/2. Similarly, the condition that the three rotations are the same 
in Figure 2c means that the input to TRT is 360/3. 

The allowable operations (or transformations) are essentially of two 
kinds; one involves changing the actual commands and the other, changing 
the inputs to the commands. Both types of operations are completely 
constrained by the available Logo commands. The latter type of operation 
results in either modifying the size of the objects Tee, Baseline and 
Rectangle, or in modifying the position of the objects (MOVE) or their 
orientation (TRT, TLT). Furthermore, the sequencing of the operations is 
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also partially constrained in those cases when one of the task requirements 
is that the figure has to be constructed from a particular starting point 
(equivalently, the program has to begin with a specific command and 
input). 

The goal state is given in terms of a computer printout and explicit 
description of certain geometric conditions that have to hold. The criterion 
for achieving the goal is a bit ambiguous in such a computer-graphics 
environment. It could either be a screen output which resembles the 
printout or the underlying program. (The question of which criterion the 
children use to justify the correctness of their solution will be considered in 
the paper.) 

Psychological demands: The way in which the tasks are structured leads 
to part-to-a-whole relations which involve subtraction/division rather than 
addition/multiplication (cf. r = b/2, r = ( s -  w)/2, fl = 360/3). This means 
that the choice of  inputs to the different commands within a program cannot 
proceed sequentially as the choice of the commands themselves. Hence, 
setting the inputs to some of the commands calls for anticipating several 
steps ahead rather than basing it strictly on the part of the program which 
is already in place. For example, in the Tee-Tower task the program begins 
with fixing the input to BASELINE as, say, 70. The next command is TEE, 
but the exact input r to TEE has to be based on 'working backwards' from 
the completed figure (see Figure 3a). Modifying a visually based estimate 
for r within a program necessitates wholesale changes in the program in 
order to maintain the structure of the figure. This can be contrasted with 
writing a production for the Tee-Tower with BASELINE as the last 
command. It would then be easier to establish the additive/multiplicative 
relation b = 2r since it would be clearer how the input r can be used as a 
'counter' to determine b, the input to BASELINE (see Figure 3b). Even if 
the input b is initially estimated and then successively adjusted till the 
Baseline seems to fit, such modifications of the program would not disrupt 
any other part of  the figure. 

1 I 
I 

_ - f . .J  L - t - -  
! I 
i ! 
I I - -  

F i g .  3 a  F i g .  3 b  
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A.4. Collection of Data 

Each researcher observed a pair of children. Aside from notes taken by 
the researchers, the main source of data was in the form of 'dribble files' 
which contained all the on-computer work, including the intermediate 
screen outputs and the content of and changes in the Editor. All paper- 
and-pencil work was saved as well. 

B. ANALYSIS  OF THE C H I L D R E N ' S  P R O D U C T I O N S  

In this section we examine in detail some of the children's solutions to 
one task from each of the three task-categories. For each such task we 
begin with a task analysis which highlights both the overt and covert 
relations that are embedded in the task. We then examine the solutions in 
terms of the relations that are being attended to, those that are ignored or 
forgotten, and the kinds of strategies used to satisfy the relations. 

Each child's production is broken up into a sequence of episodes 
beginning with their initial program which, unless stated otherwise, was 
planned off-computer or entered directly into the Editor. A new episode is 
started when either a different kind of output appears (i.e. an output 
which points to a new kind of mismatch from the goal figure) or a 
different solution strategy is employed. Because we are particularly inter- 
ested in the role of the screen output in influencing the solver's subse- 
quent actions, we begin each episode by exhibiting the output on the 
screen which is the result of the previous actions, since it is the 'trigger' for 
the new set of actions. 

We have mentioned in section A.3 that the initial solutions to a task 
tended to have, barring some elementary programming errors, reasonable 
resemblance to the goal figure. Thus, changes of the commands making 
up a program were much less frequent than changes of inputs. The latter 
resulted in changes of the placement of the objects (i.e. modifying the 
input to MOVE or TRT/TLT) or the size of the objects (i.e. modifying 
the input to TEE, RECT or BASELINE). We are particularly interested 
whether such changes were qualitative in nature ("this has got to move a 
little bit more") or exact, at least in a local sense of satisfying one of the 
problem's conditions ("this has to move another 15 to make those two 
parts the same"). When the strategies used seem to be qualitative, we label 
the change in placement push-pull and the change in size stretch-shrink. 
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These terms correspond to the way the children, on occasion, described 
their actions. 

1. The Tasks 

(a) 

Tee-in-the-Square 
(session # 6) 

I. The Centring Tasks 

I I 

[1 I II 
(b) (c) 

Solid-Tee Birthday Cake 
(session #6)  (session # 15) 

(d) 
H 

(session # 22) 

The Tee-in-the-Square task will be described in detail in the next section. 
All the tasks involved an explicitly stated condition that a rectangle is 
centred relative to another. The tasks varied to the extent to which other 
dimensionality conditions were given as part of the problem. For example, 
(a) and (d) were globally constrained by the dimension of the initially 
chosen outside square, (a) further by the requirement that the height of the 
bar equal the base of the stem and (d) by requiring the central bar in H be 
a square. Task (b) had the bar and the stem as congruent rectangles and (c) 
had explicit dimensions for the squares at each layer. Furthermore, three 
children worked also on a Castle task (sessions # 17-# 18) which included, 
in part, a centred rectangle. 

The solution of the centring subproblem requires expressing the geomet- 
ric condition as a relation involving the centring-move r and the bases of the 
two rectangles, s and w, i.e. 

w 

�9 [ r  

$ 
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2. The Tee-in-the-Square Task 

(a) Task analysis, 
Instruction: The task was given to the children as a computer printout 

and presented as consisting of a letter T inside a square. The conditions, 
given verbally, were: 

- the outside square had to be constructed first 
- in the letter T, the height of the bar rectangle was the same as the base 

of the stem rectangle 

- t h e  stem rectangle was centred. 

Analysis of the relations: The task has a dimensionality and a centring 
component. Dimensionality requires the coordination of  the sizes of  the 
rectangles making up the letter T (the stem and the bar) relative to the 
global constraint imposed by the size of the square. 

Labelling the different components of the figure as follows 

W2 

S 
S. t 

r W~ r2 

then the pertinent relations are: 

1421 = W 2 (explicit in the verbal instruction), and 

SI "]- W2 ~ S. 
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Furthermore,  centring the stem relative to either the bar or the enclosing 

square involves the centring-move r] (or r2) and the relation 

r 1 ~ r 2 ,  

subject to the global constraint given by the relation 

r] + w[ + r2 = s. centring condition 

Note: Moving the turtle from one position to the next often requires a 90 ~ 

turn prior to, and after, the MOVE command.  For  this and subsequent 

tasks, we ignore these 90 ~ turns in the discussion of the solutions. 

(b) Children's solutions. Four  of  the children proceeded by trying to place 
a bar and a stem within a specific square. The two other children perceived 

the task as that of  placing three rectangles within a square, i.e. 

1 : 2 3  

Kay 
Initial Episode 

Kay began with a 100 x 100 square, a 80 • 30 stem and a 30 x 100 bar 

(s = 100, s I = 80, wl = w2 = 30). 

30  

100 80 

3 0  

These choices failed to satisfy the relation s] + w 2 = S. 
Her  centring-move was based on a mid-point strategy of choosing 

rl = 1/2s = 50. 

Episode I 

Output: 
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Kay was alerted to the fact that the bar was too high and consequently she 

lowered the bar using a stretch-shrink strategy. She decreased w 2 (w2: 
30 ~ 25) and maintained the condition w] = w2 by changing w~ accordingly. 

Ep&ode 2 
Output: 

I 

J 

Kay repeated the previous stretch-shrink action of  lowering the bar and 

narrowing the stem by 5 units (w,  w2:25 ~ 20). She also noticed that the 

bar was not centred and used a push-pull strategy of pulling the bar 5 units 

to the left (r~: 50 ~ 45). The subsequent output suggested that the stem was 

still not centred and led her to another push-pull (rl: 45---,40). The final 

output convinced Kay that she had solved the task. 

Rosa 
Initial Episode 
Rosa started with a 60 • 60 square, a 25 • 60 bar and a 30 • 25 stem 

(s = 60, w 1 = w2 = 25, s~ = 30). 

25 

6G 
30 

25 

As with Kay, the relation st + w2 = s was not satisfied. Rosa also used a 
mid-point strategy for centring the stem (r] = 1/2s = 30). 

Episode 1 
Since Rosa completed the bar before the stem, the output was 
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Rosa attended to the centring aspect, first using a push-pull strategy to pull 
the stem to the left (r~: 30--+25). The next output led to another push-pull 

(q: 25-~ 15) and the extension of the length of  the stem by 5 (Sl: 30--, 35). 
It is not clear whether the latter choice was analytically based on the 
relation sl + w2 = s or just a qualitative 'make it longer', but it resulted in 
all the dimensionality relations being satisfied. 

Episode 2 
Output: 

r 

This led Rosa to conclude that the stem was still a bit off-centre. She 
switched to a stretch-shrink centring strategy, increasing the width of the 

stem twice (Wl: 25 ~ 26 ~ 27). 

Episode 3 
It was pointed out to Rosa that she no longer had w I = w2. She reacted by 
simply re-establishing the equality by setting wl = w2 = 30. However, since 
she left all other dimensions unchanged, she no longer had sl + w 2 = s. 
After several programming errors which threw the production completely 
off, Rosa ended up with the output: 

In order to fix the problem with the upper bar, she tried at first to shrink 
the bar and then modify the global constraint given by s by stretching the 
square (s: 60 ~ 80). Coupled with some more programming errors, her 
strategies led her further and further away from the goal. She ended up 
ignoring the relations and just visually patching up each production. This 
finally resulted with a figure still with an off-centred stem and she gave up. 
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Ben 

Initial Episode 
Ben tried placing three rectangles within a square of  a fixed size 70. The 

rectangles were chosen as 30 x 50, 20 • 50 and 30 x 50 respectively, thus 

satisfying the conditions wl- -w2 ( = 20) and rl = r2 ( = 30). 

70 
5@ 

30 20 30 

The relation sl + w2 ~--" S was satisfied by default, but the centring condition 

rl + wt + r2 = s did not hold. 

Episode 1 
Direct-mode implementation was stopped after two rectangles were con- 

structed since the output showed: 

Ib 
Ben concluded that the stem was not centred. He then used a stretch-shrink 

strategy to try to centre the stem (w~: 2 0 ~  10 and then 10-~ 15). 

Ep&ode 2 
Output:  

Ben was convinced that he had solved the centring problem so he tried to 
place the third rectangle. He began with his initial choice of  r2 = 30 then 
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shrunk it (rz: 30 ~ 20) then stretched it (r2:20 ~ 25). Even though neither 

wl = w2 nor r~ = r2 held any longer, the final output was acceptable to Ben 
as a solution. 

(c) Discussion. With the exception of  Mark, none of  the children seemed to 
have an analytical centring strategy, i.e. one which takes into account the 
values for s and w in order to figure out the centring-move r. The only 
analytical attempt was the mid-point strategy of setting r = s/2 which was 
part of the initial solution of three children. It seems that an obstacle to a 
solution was caused by the children's tendency to focus only on those 
segments of  the figure which the turtle traces or traverses, i.e. segments 
which have an obvious correspondence with the commands that appear in 

the program. Thus, they found values for either rl or r 2 (depending on 
which side of  the square the turtle was placed), while centring requires the 
coordination of  both rl and r2. 

For  the Tee-in-the-Square task, the screen output provided useful feed- 
back in directing the children's actions towards the goal. They attempted to 

place the stem at the centre using either a push-pull or a stretch-shrink 
strategy. While both strategies result in a stem which is more centred, they 
are not equivalent in terms of  the other conditions of the problem. The 

push-pull strategy leaves all the dimensionality relations intact and hence 
results in a production which is closer to the goal. The stretch-shrink 
strategy for the stem tampers with the equality w~ = w2 and hence improves 
(or solves) one of the conditions at the expense of another. 

Furthermore, there was no evidence of  any analytical solution strate- 
gies - for example, none of  the children who started with a mid-point as the 

centring-move, tried to follow it by displacing the stem by a distance 
corresponding to half of  its base. The predominant tendency was to make 
qualitative changes to the inputs, usually by multiples of 5. 

The criterion for accepting a production as a solution was visually based 
for all children - the proof  of the solution resided in the visual verification 
of the output rather than in the program and none of the children went 
back to their programs to verify the exactness of the solutions. 

3. Other Centring Tasks 

The Solid-Tee task which was given immediately after the Tee-in-the- 
Square task did not lead to any new centring strategies. For example, Kay's 
solution to two different-sized Solid-Tees was identical to her previous 
approach; a mid-point strategy followed by a qualitative push-pull. 
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The Birthday Cake task (session # 15) 

II 

led to some significant changes in strategy. Because the bases of pairs of 
adjacent squares in the figure did not differ much in size, the children did 
not use a mid-point strategy for the centring-move r, since it was visually 
obvious that r was not s/2. 

Bill abandoned his previous qualitative approach and calculated the 
centring-move for each layer as ( s -  w)/2. Kay, who prior to working on 
this task completed a project of her own choosing (a ROBOT) which had 
a similar centring problem, also switched to an analytic approach. She 
had become aware that r had to satisfy the centring condition 
r + w + r =s ,  but she could only solve for r in terms of w and s by 
forward substitution, i.e. by picking a value for r and checking whether it 
satisfied the relation. After a few tries, her search for r was systematic. All 
her calculations were done prior to running her program, pointing to her 
new awareness that the exactness of the solution lies in the program 
rather than the screen output. 

Rosa didn't change strategies till the H-task (session # 22). 

F 
r 1 

S W 

She started centring the middle bar with a mid-point strategy and when 
the bar appeared too high, she tried rescaling the whole figure, but kept 
her mid-point strategy. The result triggered another push-pull but this 
time she calculated the centring-move by coordinating the relations rl = r2 
and rl + w + r2 = s. This was one of the few unprompted shifts to analyti- 
cal work by Rosa. 
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II. The Baseline Tasks 

1. The Tasks 

The Baseline tasks consisted of the following: 

II 

(a) (c) 
Tee-Tower Bricks 

(session # 2) (session # 4 and # 5) (session # 8) 

h 
(b) 

4-Tee 

All the tasks involved an explicitly stated condition that the figures had 
to constructed starting with the Baseline. The fact that the Tees in task (a) 
were congruent was also made explicit, but the placement of the Tees was 
assumed to be self evident from the printout. The 4-Tee task was further 
constrained by the requirement that the Tees be aligned on both sides and 
that the large Tees just touch. No other explicit conditions were given for 
task (c), and the number of  bricks was not the same for all the children. 
Depending on their responses, some children were asked to generalise to N 
bricks on a fixed Baseline and further to a varying Baseline. 

An exact solution of  any of the above tasks requires the awareness that 
the initial choice for the length of Baseline completely fixes all the subse- 
quent inputs. Thus the solutions entail expressing the dimensions of the 
Tees and Rectangles as fractional multiples of  the input b to Baseline. 
While the Bricks task calls for a fairly straightforward relation, i.e. N bricks 
of base b i n  the other two tasks require a more elaborate analysis in order 
to come up with required relations. In the Tee-Tower task one needs to 
coordinate the size s of the Tee (i.e. the height and width of the Tee) with 
certain horizontal displacements which correspond to s/2 so as to arrive at 
the relation s - -b /2  (unless one happens to notice that at the second level 
of the tower, the two bars of the Tees have total length equal to b). 

Only solutions to the 4-Tee task will be described in this section. We note 
that this task is further complicated by the fact that there are two 
different-sized Tees to contend with. Thus, to arrive at the relation s = b/3 
demands a high level of  coordination of multiple relations. 
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2. The 4-Tee Task 

(a) Task analysis 
Instruction: The task was presented as a printout 

with the following conditions: 
- t h e  task had to be started with the Baseline 
- t h e  small and large Tees were to be aligned 
- t h e  large Tees were contiguous ("no overlap and no gap") 

Analysis of the relations: The task has both a symmetry and a dimension- 
ality aspect. The symmetry relations, while not given an explicit mention, 
seem obvious from the printout. They include: 

sl 

d 1 D d 2 

S] = $2 symmetry condition 

dl 

The placement of the Tees on the Baseline, again obvious from the 
printout implies the relation: 

dl+ D + d2 = b baseline condition 

The procedure Tee takes a single input which fixes both the height and 
the width of the figure Tee. Since the moves between adjacent Tees are 
determined by the width of the Tee figure, it requires viewing the size of the 
Tee as 

s/2 s h  
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This leads to the relation 

d~ = sl/2 and d2 = s2/2 placement condition. 

The two explicit geometric conditions given with the task lead to the 
following relations: 

S~ = 2s] and 5:2 -- 2s2 alignment condition 

and 

D = $1/2  -t- $2/2 = S contiguity condition 

(The placement and alignment condition will generally be expressed as 
d = s/2 and S = 2s.) 

These five conditions imply that all the inputs are covariant with the 
length of the baseline b. The actual relation between the first two inputs in 
the procedure, b and s, turns out to be s = b/3. (This is a rather unexpected 
relation given the strong "binary" flavour of the task; there are two small 
Tees, two large Tees and a 2:1 ratio between their size. Thus, the 
"psychological" demand of the task is to break out of a binary "set". This 
resembles our previous analysis of the classical "nine-coin weighing" 
problem (see Hillel and Wheeler, 1981).) 

(b) Children's solutions. All the six children fixed a baseline and then chose 
some reasonable value for s and began their construction at the left hand 
side (which is where the turtle is after executing BASELINE). 

Three of the children's initial programs involved a symmetrizing ap- 
proach which relies on the relation d~---d2 in 

all d2 

i.e. after completing the big Tee on the left they ended up at the right end 
of the Baseline by either moving the distance b - d l  and constructing the 
small Tee or by moving b - 2 d l  across and constructing the large Tee on 
the right. This approach automatically coordinates all but the contiguity 
condition (unless s is chosen exactly as b/3). 

Two other children used a eentral-interval approach which relied on the 
contiguity relation D = S for placing the right hand large Tee, i.e. 
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-H,: b 
This approach resolves the contiguity condition at the expense of  the 

Baseline condition. 

One child, working in direct mode, alternated between the two ap- 

proaches. 

Ben 
Initial Episode 
Ben's symmetrizing approach had b = 90, s = 40, d = 20 and S = 60 hence 
his Tees were non-aligned and non-contiguous. He constructed the Tees in 

the sequence 

#2 #4 

9 0  

Episode 1 
Output: 

Ben was content that he had solved the problem till he was questioned 
about the contiguity condition. This led him to a stretch-shrink strategy on 
the large Tees (S: 6 0 ~ 5 5 ~ 5 0 )  which was stopped when he visually 
estimated that the contiguity condition (S = D) was satisfied. His new 
solution with s = 40, S = 50 still did not satisfy the alignment condition. 
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Episode 2 
Output: 

-H h- 
Ben's attention turned to the small Tees which he felt were " too high" 
(rather than not a l igned-  i.e. Ben focused on the height rather than the 
width of  the Tees). He repeated his stretch-shrink strategy on the small Tees 
(s: 40 ~20) ,  keeping all the placement moves untouched. 

Episode 3 
Output: 

TI T 
The output now focused Ben's attention on the gap (i.e. on the width of  the 
small Tee's) and he began to reverse his previous action by stretching the 
small Tees (s: 20 --* 25 --* 30 --* 35). 

Episode 4 
Output: 

ri 1r 
Ben noticed that a gap remained but also that the small Tees were getting 
" too tall" relative to the large Tees, i.e. he was now coordinating visually 
both height and width components of the Tees. He tried to deal with the 
two problems simultaneously by shrinking both the Baseline (b: 90 ~ 80) 
and the small Tees (s: 35-+25). 
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Episode 5 
Output: 

IT 
Ben tried to patch up the various gaps by reversing his previous actions. He 
started to simultaneously stretch the Baseline (b: 80 ~ 85 ---, 87 --. 88) and 
the small Tees (s: 25--.35--.37). His program ended up satisfying only 

some of  the symmetry condit ions (s~ = s2, S~ = $2) and the contiguity 
condition (D = S). (Further changes, during the subsequent session, re- 
suited in a solution which was almost identical to the very initial one. Ben 
was not motivated to change it any further.) 

Ell 

Initial Episode 
Ed worked in direct-mode. His symmetrizing strategy placed the Tees in the 
following order: 

#4 #3 

lOO 

He chose b = 100, s = 50, d = 25 and S --- 100. 

Episode 1 
Output: 

As was the case with the previous solvers, Ed was content that he had 
solved the task till the overlap of the large Tees was pointed out to him. 
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Unlike the other solvers he appropriately used a stretch-shrink on the small 
Tees, halving s (s: 50--+25) and essentially reapplying the symmetrizing 

approach with the new input. (Actually, Ed proposed first to construct the 
Baseline after the Tees, st~.ting that it would be a simpler program.) 

Ed picked up the task again during the next session. Starting with his 
modified inputs b = 100, s = 25 and S = 50, he choose d = 15 (rather than 
12.5, if he were consistent with his halving of inputs). His symmetrizing 

approach now resulted with a gap between the large Tees. Unlike his action 
of  the previous session, this time he applied a stretch-shrink only on the 
large Tees (S: 50 ~ 60). The resulting output, with unaligned Tees, led him 
to abandon his solution. 

Kay 
Initial Episode 
Kay worked directly in the Editor and chose b = 100, s = 50, S = 100 and 

d = 25. Her central-interval approach was achieved by a 'moving along the 
Tee' strategy: 

Her initial solution met all but the baseline condition. 

Episode I 
Output: 

Kay figured analytically that the Baseline is 50 steps short and fixed the 
baseline condition by modifying b from 100 to 150, i.e. she ended essentially 
computing b in terms of s and S thus solving an easier additive/multiplica- 
tive type problem. 

Mark 
Initial Episode 
Mark started by symmetrizing, setting b = 100, s = 30, S = 60 and d = 15 
thus coordinating the alignment and the placement conditions. 
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100 

However, in writing the program in the Editor he reverted to the central- 
interval approach ("since I have 15 and 15 [for d], I'll have to move 70 [for 
D]") thus coordinating the baseline condition D = b -  2d = 70 with the 
contiguity condition D = S and, consequently, modifying S (S: 60--* 70). 
This highly analytical approach, which was based on combining relations 
resulted in a solution which no longer satisfied the alignment condition. 

Episode 1 
Output: 

Mark realized that Tees were not aligned and decided to give the small Tees 
a qualitative stretch (s: 30~40).  He also coordinated the placement 
condition (d: 15 ~20).  Since he kept the Baseline fixed, his program now 
violated the baseline condition, as well as the alignment condition. 

Episode 2 
Output: 

-d h- 
Mark attended to the alignment condition by setting S = 2s- -80  and 
extending the Baseline. Keeping the central interval fixed at 70, he first tried 
b: 100~ 110 (using the baseline condition b = d~ + D + d2). Realizing that 
the Tees were no longer contiguous, he extended b once more, reasoning 
analytically that "the Tees are 40, 40, 8 0 . . .  should be 120". 
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Episode 3 
Output: 

Mark understood immediately the reason for the incorrectly placed Tees 
("I  forgot to push this guy [the larger Tee on the right] over") and 
modified the central interval D to 80, ending with a program which he 
knew was the correct solution even prior to executing it. 

(c) Discussion. Five of  the children ended up having to deal with non-con- 
tiguous large Tees due to an inappropriate central interval. They dealt 
with it by modifying either the size of the Tees or the size of the Baseline. 
The actual placement of the Tees on the Baseline was not tampered 
with. 

The modification of  the size of the Tees was generally a qualitative 
stretch-shrink action. All but one of the children applied a stretch-shrink 

strategy to the large Tees only (stretching to close a gap and shrinking in 
the case of an overlap) hence inadvertently abandoning the alignment 
condition. Ed, on the other hand, anticipated after his initial try that he 
had to act on the small Tees first and modify the other inputs accord- 
ingly. This approach could have led at least to an effective trial-and-ad- 
justment strategy had he persisted with it. 

Five of  the solvers also operated on the Baseline to deal with non- 
contiguous Tees (thus altering the nature of  the task since the size of  the 
Baseline was supposed to be fixed). Such action was generally followed by 
a cascade of other changes including the re-placement of the Tees on the 
new Baseline. 

Bill tried to narrow the gap between the large Tees using a rescaling 
operation where all the inputs were halved. This resulted with a gap half 
as small as the previous one but proportionally the same relative to the 
new figure. The rescaling operation seemed to have been based on a 
certain confusion between absolute and relative measures. 

The three children who solved the task on their own did so by modify- 
ing the Baseline to deal with the incorrect placement of  the Tees on it (i.e. 
in cases where only the baseline condition failed to hold). As we have 
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remarked earlier such strategy was tantamount to solving a simpler addi- 
tive/multiplicative problem whereby b is expressed in terms of s and S. 

As with the centring tasks, the screen output contained information 
about both the matches and mismatches between a current production 
and the target figure. However, unlike the centring tasks, the output in 
this case seemed to have led the children to generate strategies which were 
not fruitful, given the high interdependence among the different compo- 
nents of the figure. 

Because the set of available Logo commands was limited, each par- 
ticular component of  a figure corresponded, in an obvious way, to a 
program line. When a screen output pointed to a particular mismatch 
(e.g. a gap, an overlap, a misplaced Tee, etc.), children tended to attribute 
it to an input(s), of the corresponding command(s). In other words, their 
reaction to a particular output was to associate effect with cause. In 
general, for 'sectors' of the output figure which matched the goal figure, 
the corresponding program lines were left intact (e.g. the placement of 
the Tees on the Baseline was not tampered with when the Tees were 
non-contiguous). The overall approach was the invocation of what could 
best be described as 'patch-up' strategies. Many of the above descriptions 
of the children's solution episodes are stories about a de-structuralization 
of a highly analytical task, caused by local and qualitative patching-up 
strategies. 

Both the initial symmetrizing and central-interval approaches involved a 
fair degree of analytical work. The relative sizes of the Tees and their 
placement on the Baseline (i.e. the inputs to the various MOVE com- 
mands within the program) were based on a conscious attempt to satisfy 
as many of the overt relations as possible. However, subsequent solution 
strategies were dominated by .a qualitative push-pull or stretch-shrink, 
typically modifying sizes of the objects and their placement by multiples- 
of-5, doubling or halving of inputs. In some instances, the strategies were 
analytical but only in a local sense, i.e. modifications were based on 
satisfying a single condition and not taking into account the effects on the 
other relations. 

None of the children emerged with an awareness that there is a relation 
between the input s and the input b. The first choices for s were visual 
estimates (and reasonable ones at that, as they tended to fall between b/4 
and b/2) which were modified in the course of the solution in various 
ways. On the other hand, three of the children were able to, eventually, 
figure out analytically the additive relation b = 1/2s + 1/2S + 1/2S + 1/2s 
but not explicitly the multiplicative relation b = 3s. 
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Initially, all the children judged success by the output. Since the output 

did not alert the children to the fact that the Tees overlapped, four children 

concluded erroneously that they had solved the task. However, when three 

of  the children felt, later in the session, that they had solved the task, they 
based their claim on their exact computat ion of b in terms of s and S. This 

points to a move away from a strictly visual assessment of  the correctness 
of  a solution. 

III.  The Rotation Tasks 

1. The Tasks 

The Rotat ion Tasks consisted of a sequence of eight tasks including: 

(a) (b) (c) 
3-Tee 6-Tee 10-Tee 

(session # 12) (session # 12) (session # 12) 

(d) (e) 
12-Shell 3-Paddle 

(session # 13) (session #15) 

All the tasks involved an explicitly stated condition that all of  the angles 
(or " turns"  if the children did not understand the term "angles") were the 
same size. In addition, the children were told that the Tees were the same 
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size in tasks (a), (b) and (c); that the Tees increased by the same amount 
for task (d); and that the three rectangles and stems in task (e) were the 
same size. 

From our perspective, the solution of the rotation subproblem of these 
tasks requires expressing the geometric condition of n equal angles as a 
relation involving 360, i.e., 360/n. Children's attempts to solve the 6-Tee 
Rotation task are typical of their work with the other rotation tasks, and 
are thus presented in detail. 

2. The 6-Tee Rotation Task 

(a) Task analysis 
Instruction: This task was presented as a printout, 

after the children had already worked on these two tasks 

during the same session. They were told that all the angles (i.e., turns) were 
the same size. 

Analysis of the relations: 

$ 
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The fundamental relations in this problem are: 

fl l  ~--- f12"~-f13 = f 1 4 = f 1 5  = f16 

and 

fit + fie + f13 + B4 + fl, + f16 = 360 

(or equivalently, fll + f12 + f13 = 180). Thus, the input to each turn is 360/6 
or 60. The task demands knowing not only that a complete turn is 360 
(or that half a complete turn is 180) but also how this is relevant to the 
task. In particular, the final turn f16 is not a necessary part of the 
production of the figure, yet it must be taken into account for an analytical 
calculation of the angle. In this respect, the rotation tasks have some- 
thing in common both with the calculation of the centring-move in the 
centring tasks and the calculation of, say, the central-interval in the 4-Tee 
task. 

(b) Children's solutions. Three of the children initially proceeded by choos- 
ing 45 as input to the turn; the other three used 60 though only in one case 
was it based on the notion of 180 or 360. 

Ben 
Initial Episode 
Ben began with fl = 45. He continued in direct mode until five Tees had 
been produced. 

Episode I 
Output: 

This output suggested to Ben that he was getting too many Tees. He 
decided to eliminate the horizontal Tee. He began his six Tees again and 
kept ill, f13, and f14 at 45, but changed f12 and f15 to 90. 
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Episode 2 
Output: 

This output pleased him, though it was not clear whether he thought that 
he had solved the given task. When he was asked if his screen picture was 
the same as the printout of the task, Ben replied, "No, I'll just make the 
turn larger". This time he used a push-pull and increased fl~ (ill: 45 ~ 50). 

Episode 3 
Output: 

Since the screen output indicated two overlapping Tee's but the Tees in the 
printout did not overlap, Ben used two more push-pull's (fl: 50 ~ 55--+60). 
He was satisfied with the final output. 

Bill 
Initial Episode 
The previous task 

had concluded with a discussion of the role of 360 degrees in the total turn 
of the turtle. Thus, the interviewer initiated this task with the question, 
"What  do you think would be the size of each angle?" Bill replied that it 
would probably be 60 because 360 divided by 6 is 60. However, he did not 
incorporate this idea into his procedure for the figure. He used TEE 40 and 
TLT 45 in a REPEAT 6 construction. 



SOLVING GEOMETRIC TASKS ON THE COMPUTER 31 

Episode 1 
Output: 

G 
The output alerted Bill to the overlapping Tee's which he tried to remedy 
by shrinking the bar of the Tees. He decreased the input to the TEE 
procedure (s: 40--, 35), but kept the turn input the same as before. 

Episode 2 
Output: 

G 
The output was similar to the previous one. Bill again tried to manipulate 
the size of the Tee's, this time to "stretch the stems", presumably to distance 
the top pieces of the T's from each other. He increased the input to the TEE 
(s: 35 ~ 60). The interviewer then drew Bill's attention to the angles of the 
figure. This hint resulted in changes to the inputs for both the Tee figure and 
the turn (s: 60 ~ 40) (/~: 45---, 60). It is not clear whether the latter change 
was just a "pull" or was analytically based. The output satisfied Bill. 

Kay 
Initial Episode 
Kay drew, in direct mode, the first Tee (s = 50) followed by a turn of 45. 

Episode 1 
Output: 

I 
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The screen output indicated to her that she should increase the size of 
the turn. She used a push-pull (fl: 45 ~50) but the output still did not 
look right to her ("It looks as if the tops of the Tee's might touch"). The 
input to the turn was further increased (fl: 50 ~ 60). She then proceeded 
to "draw" the rest of the Tees and with the same inputs. The final output 
satisfied her. 

(c) Discussion. In this task, only two children chose their initial input to 
the turn command based on analytical approaches. One used 360-  180 
relationships; and the other used the relation between the angles of a 
6-Tee Rotation and the angles of a 3-Tee Rotation and halved the input 
to the turn of the 3-Tee figure. (We note that while the latter approach 
was effective for this task it is not a generalizable one.) The remaining 
children chose an initial input of 45 for the turn, because it "looked like 
half of a 90 turn"-evidence of the 45-90 schema, a schema that is 
described elsewhere (Kieran, Hillel and Erlwanger, 1986; Hillel and 
Kieran, 1987). To try to eliminate the discrepancy between the screen 
output and the printout, the children used either a push-pull or a stretch- 
shrink strategy. 

The most commonly used stretegy was to "push" the Tee's farther 
apart about the central point. The input to the turn was increased until it 
looked as if the Tee's would be properly distanced from each other. The 
children used the overlap/non-overlap of the Tees as cues that they were 
getting closer to the goal. 

The stretch-shrink strategy was used by Bill when he saw that the bars 
of the Tees were overlapping. He seemed unaware that decreasing the 
input to Tee would simply produce a smaller but similar figure, even 
though he had been working with the TEE procedure throughout the 
previous four months. In his next attempt he began to focus on the stem 
of the Tee and he tried stretching the stems, in order to eliminate the 
overlap of the top pieces which resulted, again, in similar Tees. His 
strategy here was consistent with his attempt to use rescaling to get rid of 
the gap between the Tees in the 4-Tee task (see section ILII). 

The children who began with a visually-based estimate for the turning 
angle continued by making qualitative adjustments to their productions, 
by comparing the output with the printout. The output in this case 
provided useful feedback in directing these qualitative strategies towards 
the goal. It did not, however, lead the children to focus on the structural 
features of the figure and to attempt a more analytical approach. 
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The criterion for success remained the visual verification of the output. 
The three children who used a qualitative approach did not try to verify the 
6-fold symmetry of the figure by checking that the remaining turn (136) was 
the same as the first five turns. 

3. Other Rotation Tasks 

The two main solution strategies that were used with the 6-Tee rotation 
task were also used with the other Rotation Tasks. 

With the various rotation tasks, it became clear to us that the children 
were not taking into account the nth angle of an n-Tee rotation task. 
Rather, they persisted with the strategy of "drawing one object and then 
turning" and continuing until the last object was drawn. Thus, the last 
angle of the figure was formed without their having to assign an input. For 
example, with the 3-Tee task, Kay eventually ended up with 110 and 130 as 
inputs for fll and 13> When she was reminded that the three angles had to 
be the same, she then changed both inputs to 125. With this same reminder, 
Rosa also changed her two inputs from 105 and 120 to 130, i.e. the children 
continued to consider only the explicit turns for which they had to provide 
inputs. They did not take account of the last angle that was created by 
default. 

During session # 14, we discussed with the children, on an individual 
basis, the relationship between 360 ~ and the n-angles of the previous tasks. 
These discussions had varying effects on different children. For example, 
with the 10-Tee task given to Ben in the previous session (session # 13), he 
began again with a turn of 45. After viewing the output, he decided to 
make two adjustments: shrink the Tee's in order to cut down the overlap of 
the top pieces and to pull the Tee's closer by "not moving so much space". 
Though Ben knew that "360 makes a full circle", he did not use this 
knowledge. In session # 14, Ben started a 6-Rectangle rotation task by 
choosing, once more, an input of 45 for the turn. The resulting screen 
output had led him to increase this input to 55, producing a figure which 
looked good enough to him. When the interviewer started discussing with 
Ben 360 degrees in relation to the total number of turns, Ben changed his 
55 to 60. He then began to look for a pattern in subsequent tasks, but not 
one involving 360. "Since 6 turns require TRT 60, a 10-turn figure would 
require TRT 100". Though he had stated that the turn for a 10-Rectangle 
figure would be smaller than for a 6-Rectangular one, he insisted on using 
his REPEAT 10 [RECT 120 10 TRT 100]. For a subsequent 3-Rectangle 
figure, he again used the same pattern REPEAT 3 . . .  TRT 30. 
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After discussion on the role of 360 ~ Kay attempted to solve the 3-Paddle 
task (session # 15), 

by calculating on paper the following products: 96 x 3, 105 x 3, and finally 
120 x 3, i.e., she solved for the appropriate input using a forward substitu- 
tion in the (correct) relation, just as she had done for calculating the 
centring-move for some Centring tasks (see section B.I). 

It is probably fair to say that within the time frame allocated to these 
rotations tasks, the role of 360 degrees was not appreciated by most of the 
children. We did not observe a shift from a qualitative to an analytical 
solution strategy that took place with, for example, the Centring tasks. 

C. CONCLUSION 

There are several perspectives from which one can examine the problem 
solving behaviour of solvers. One may want to come up with a general 
description (or a model) of the solution process which is independent of the 
specific problems being solved. Alternatively, one may examine the efficac- 
ity of the process in terms of its success in resolving the problem(s) given. 
We, on the other hand, have examined the children's solution behaviour 
from another perspective; namely, whether the solution strategies led to 
insights about the actual nature of the problem and about some of its 
underlying mathematical relations. This perspective is of particular interest 
when a solver is presented, over time, with many tasks which embody the 
same or very similar characteristics. 

A computer environment has been touted as a very good environment 
for problem solving work, particularly because the screen output provides 
an instant feedback as to the validity of a particular attempted solution. 
Our experience has been that the computer environment is certainly an 
engaging one for children, and creates a good motivational level to persist 
with the solution of a problem. Some of the attempts to solve a particular 
problem took nearly two sessions, a level of engagement rarely seen with 
children of that age in a more traditional paper-and-pencil solving activity. 
We also do not underestimate the role of the Turtle as an 'object to think 
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with' in our more specific Logo-based environment, though we have not 
discussed this aspect in our description of the children's work. For example, 
Mark, who was by far the most sophisticated solver in the group (and 
hence seemed very likely to think a problem out, independently of the 
Turtle) was often overheard saying to himself things like "o.k., I am the 
turtle and I am here and I have got to move this much across. . .  ". 

The issue taken by our study relates to the 'feedback' aspect of the 
computer environment. It stems from our observations (and of others in 
the field) that this feature of the computer encourages solution strategies 
which are qualitative and driven by visual data, rather than being based on 
explicit or implicit relations. Such solution behaviour often results in 
successful solutions but, we argue, does not lead to the kind of mathema- 
tization of the problem that we, as mathematics educators, would like to 
see. The question we posed to ourselves was whether changing the nature 
of the tasks typically given to children in a Logo environment would lead 
children to adopt a more analytical solution approach. To this end, we were 
very deliberate in separating 'programming' issues from those relating to 
'properties of figures', by choosing tasks with minimal programming de- 
mands. We were also very explicit about the geometric conditions that 
needed to be satisfied by a given geometric figure; we constrained the 
possible operations that could be performed and we insisted on exact 
solutions. Some of the tasks involved multiple interrelated conditions, thus 
rendering their solutions difficult with a visually-based approach. The 
children's task was to write the programs which would produce the given 
figures with the available set of actions (commands). This required the 
quantification of the given geometric conditions by specifying inputs to the 
commands appearing in the program. 

We have described in detail the children's solutions to three representa- 
tive tasks, one from each set of tasks sharing certain common structural 
features. We might start by asking how the behaviours of these novice 
solvers working on non-routine problems differ from those observed in a 
more traditional paper-and-pencil setup, that is, we can try to delineate the 
general features of the solution process from those features that are specific 
to the computer environment. To answer this question, we take up the 
description given by Bell (1981), one which was found to give a reasonably 
good 'fit' for the case of novices solving 'non-standard' problems in a 
traditional setting: 

The [problem solving] p roces s . . ,  consists primarily of selecting a subset of  the data small 
enough to be processed, leading to a production of a new piece of  the knowledge integrating 
that subset; the end of  such a phase is often marked by an act of  verification, a check. Attention 
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then moves to a new subset of data, possibly including the new item, and this new subset is 
similarly processed. In this way the number of items to be co-ordinated is progressively 
reduced until they can be processed simultaneously to resolve the problem. Blockages occur 
when one of these attempts at co-ordination either fails or produces an incompatibility. 
(pp. 110-111) 

There are, obviously, features of  the children's solutions that resonate very 

well with the above description. The solutions of the problems requiring the 
coordination of  multiple data (e.g. Centring and Baseline tasks) showed the 
solvers attending to different problem conditions after each verification stage 
of the solution. However, there are two striking differences. While Bell's 
description suggests a progressive coordination of  more items of data as the 
solution advances, this was not the observed behaviour of our solvers. Often, 
their initial solution attempts were the ones in which they coordinated the 
largest set of  data. Subsequent attempts involved coordinating one or several 
items of  data independently of the other conditions of the problem. In the 
cases where a successful solution was reached, it was more often via 
'patching-up' rather than due to a simultaneous processing of  the multiple 
conditions. This was particularly so in the case of the 4-Tee task, where we 

have described the solution process of  some of the solvers as a 'destructural- 
ization' of  an initial, well-coordinated plan. We believe that this 'anomaly' 
in the progression of  the solution is very revealing. The initial planning, in 
the absence of any output on the screen, was based on some of the given 
problem conditions. Subsequent attempts, in the presence of a screen output, 
focused on eliminating the discrepancies between the output and the given 
figure. They were visually-based attempts, resulting mostly in qualitative 
strategies. On occasion, the solution attempts were analytical in a 'local' 
sense (i.e. trying to satisfy one condition based on the chosen inputs but 
forgetting its relation to the other conditions). Only on rare occasions were 
they analytical in the 'global' sense referred to in Bell's description, that is, 
the simultaneous processing of all the conditions. 

The other aspect which differs from Bell's description is the total absence 
of 'blockages', so commonly observed with paper-and-pencil tasks. Though 
we did not indicate the time span between successive episodes, at no time 
were the children stuck after getting an output. An output always triggered 
a fairly immediate action. It is hard to say whether this is a positive aspect 
in a problem-solving situation. It certainly helps to keep the solution process 
going, while 'blockages' may result in solvers' becoming completely stuck. 
On the other hand, this spontaneous reaction to the output does not lead 
to a reevaluation of strategies, while 'blockages' are often the catalysts to 
more fruitful solution strategies. 
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Another aspect of the children's solution behaviour was their criterion 
for having successfully completed a task. As we have pointed out in the 
description of their work, it was based on the appearance of the output. In 
a way, this is also not specific to a computer environment but is a more 
general phenomenon related to the presence of geometric figures. For 
example, Zykova (1969) and Schoenfeld (1986) have written about stu- 
dent's inferring properties of figures by using "it looks like" arguments. 
What is different in our situation is the availability of the children's 
programs as an alternate 'proof'  of a solution. Yet, whenever they were 
pressed to justify the correctness of their solution, the children generally 
referred to the output on the screen rather than check that their inputs to 
the commands were consistent with the conditions of the problem. This was 
particularly so if their solution was arrived at using qualitative strategies. 
This suggests that these children did not view procedures as "a summary of 
relationships and sub-procedures which are the logical analogs of geometric 
action/objects" (see Olson, Kieren and Ludwig, 1987.). Rather, procedures 
were viewed simply as lists of actions which drive the Turtle around. 

Finally, we address the question of whether the particular computer 
environment (including the set of tasks) was conducive in promoting a 
change of awareness about the nature of the problems and about the way 
to solve them. The problems that we gave differed quite a bit from each 
other in their degree of complexity. However, the children's solution 
strategies were fairly uniform across the tasks-  each output usually led to 
either a push-pull or a stretch-shrink action. The effectiveness of these 
actions varied substantially with the task. The push-pull strategy was 
certainly an effective trial-and-adjustment strategy for both the Centring 
and Rotation tasks. In the case of the Centring tasks, this qualitative 
strategy was followed in time by an analytical strategy based on the 
centring-relation, at least for some of the tasks. It is reasonable to assume 
that the use of the push-pull strategy led to an eventual understanding of 
the essence of the centring problem. This was not the case with the rotation 
tasks as the role of 360 remained hidden by the use of the push-pull 
strategy, one which persisted even after several discussions about 360. By 
contrast, these qualitative strategies were not effective even as trial-and- 
adjustment strategies in the 4-Tee task, as they often resulted in movement 
away from the goal. Even when this (admittedly very difficult) task was 
solved, its actual structure was not very well understood. It is evident that 
the children were not discriminating in their use of these strategies. Rather, 
they were evoked spontaneously as a reaction to an output, without 
reference to the nature of the problem at hand. 
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Balacheff (1986) reminds us that a pupil acts as a practical man and 
not as a theoretician and that "the problem of  the practical man is to be 

efficient not rigorous; it is to produce a solution, not to produce knowl- 
edge". This comment puts into focus the gap between our concern 
(knowledge) and the children's (solution), and our contention that 
the computer can exacerbate this difference. Since efficiency for the chil- 
dren was measured in terms of producing a reasonable screen figure, the 
cycle of  outputs followed by patching-up strategies was very effective even 
if it took a long time to complete. It leads us to conclude that the 
interaction child-machine alone does not lead to the mathematization of  
problem-situations for problems involving multiple conditions; that the 
computer can serve as an effective problem solving tool only if accompa- 
nied by more traditional forms of discourse between pupils and teacher. 
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