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MIXING MICROWORLD AND CAS FEATURES
IN BUILDING COMPUTER SYSTEMS THAT HELP
STUDENTS LEARN ALGEBRA

ABSTRACT. We present the design principles for a new kind of computer system that
helps students learn algebra. The fundamental idea is to have a system based on the
microworld paradigm that allows students to make their own calculations, as they do with
paper and pencil, without being obliged to use commands, and to verify the correctness of
these calculations. This requires an advanced editor for algebraic expressions, an editor
for algebraic reasoning and an algorithm that calculates the equivalence of two algebraic
expressions. A second feature typical of microworlds is the ability to provide students
information about the state of the problem in order to help them move toward a solution.
A third feature comes from the CAS (Computer Algebra System) paradigm, consisting of
providing commands for executing certain algebraic actions; these commands have to be
adapted to the current level of understanding of the students in order to only present
calculations they can do without difficulty. With this feature, such a computer system can
provide an introduction to the proper use of a Computer Algebra System. We have
implemented most of these features in a computer system called ApLuUsIX for a sub-domain
of algebra, and we have done several experiments with students (mainly grades 9 and 10).
We had good results, with positive feedback from students and teachers. APLUSIX is
currently a prototype that can be downloaded from http://aplusix.imag.fr. It will become
a commercial product during 2004.
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1. INTRODUCTION

Since the 1980s, a few ILEs (Interactive Learning Environments) for
algebra have been designed and used, at least for experimental pur-
poses (Bundy and Welham, 1981; Foss, 1987; McArthur and Hotta,
1987; Thompson, 1989; Oliver and Zukerman, 1990). Three research
groups in particular have carried out long-term research on algebra
ILEs. The Carnegie Mellon team (Pittsburgh, USA) developed the
ALGEBRA-TUTOR (Anderson et al., 1990) for simple equations, and
PAT (Koedinger et al., 1997) for word problems and simple equations.
PAT is now a commercial product used in many schools in the USA.
The MATHXPERT team created the MATHXPERT system (Beeson, 1990,
1996) for algebra and calculus, now also a commercial product,
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which can deal with a wide range of problems at secondary school
and college level. The ApLUSIX team realised an ILE' (Nicaud et al.,
1990) for factorising polynomials. This system has been used exper-
imentally for 10 years (Nguyen-Xuan et al., 1993, 1999), but it re-
mains a prototype. More recently, several other prototypes have
appeared, e.g., a web-based tutor for simple equations (Alpert, 1999),
and L’ALGEBRISTA (Cerulli and Mariotti, 2000), a microworld in
which the operators are theorems.

Since the 1970s, Computer Algebra Systems (CAS) such as
MAPLE?, MATHEMATICA and DERIVE have been developed as systems
devoted to formal algebra. These systems are commercial products
that solve formal algebraic and numerical problems with powerful
methods, and can draw many kinds of 2-D and 3-D graphs. Gen-
erally, these systems offer “one-step’” solutions — no intermediate
calculations are presented. CAS are designed to help professional
users of mathematics, and are not directly intended for use in
mathematics education. As mathematics educators have found, the
use of CAS in education has significant drawbacks and a good
understanding of algebra remains essential to use CAS (Ball, 2001).
Computer systems for helping students learn algebra can be based
on a CAS: the acTivEMATH group (Biidenbender et al., 2002) and
(Lagrange and Py, 2002) are examples of such work.

In 2000, the apLusix group began to investigate a new kind of
ILE for algebra. At that time, there were no ILEs for algebra that
allowed the student to freely build and transform algebraic
expressions, as one can do on paper; the existing ILEs were com-
mand-based systems that did not allow the student to proceed
without applying a command chosen from a menu. We decided to
build such a system, and this paper presents our ideas for the design
of such software, and describes the actual ApLUSIX system that we
built.

For this new kind of ILE, we consider three main characteristics.
The first consists of having advanced editing to let the student de-
velop his or her own reasoning steps. This includes, on the one
hand, an editor for algebraic expressions and, on the other hand, an
editor for algebraic reasoning. The second characteristic is epistemic
feedback through indicators that show the state of expressions and
the correctness of the student’s calculations. These two character-
istics come from the paradigm of microworlds as learning envi-
ronments, although the second one goes beyond the usual feedback
provided in microworlds. (Usually, microworlds are not able to



MICROWORLDS FOR THE LEARNING OF ALGEBRA 171

evaluate the correctness of a piece of reasoning.) The third main
characteristic, coming from the CAS paradigm, is the availability of
commands for having certain calculations performed by the system.

This paper is arranged as follows. Section 2 provides the main
goals and principles for the design. Section 3 shows two examples of
use of ApLusix. Section 4 is devoted to the editing of algebraic
expressions, a key issue when the goal is to manipulate the same
objects as with paper and pencil. Section 5 concerns the editing sys-
tem for algebraic reasoning, limited to reasoning by equivalence, and
the verification of the student’s calculations. Section 6 tackles the
issue of epistemic feedback in algebra. Section 7 presents the CAS-
like commands currently implemented in the ApLUSIX system. Sec-
tions 8, 9 and 10 describe the tests and experiments we have carried
out with APLUSIX.

2. MAIN GOALS AND PRINCIPLES FOR THE DESIGN
OF APLUSIX

In this section, we present our main goals and principles for the
design of ApLusiX. Before that, we present a model of reasoning by
equivalence and we briefly describe three command-based ILEs.

2.1. A Model of Reasoning by Equivalence

Reasoning by equivalence is a major reasoning mode in algebra. It
consists of searching for the solution of a problem by replacing the
algebraic expression of the problem by equivalent expressions until a
solved form is reached. The importance of this reasoning mode comes
from its capacity to solve many problems and sub-problems in
algebra. However, there are other reasoning modes such as necessary
conditions, sufficient conditions, recurrence, and so on.

We consider that an algebraic problem is given by a problem type
(e.g., factor a polynomial, solve an equation, calculate a primitive)
and an algebraic expression (this term having a wide sense, including
equations). So, “Solve (2x — 1)(x + 3) +4x> — 1 = 0" is an example
of an algebraic problem. There is an equivalence relationship between
expressions: replacing an expression or a sub-expression in a problem
by an equivalent expression provides a new problem having the same
solutions. Identities allow transformation of expressions while
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maintaining equivalence. For that, the identities are oriented, taking
the form of transformation rules (also called rewriting rules). For
example, 4> — B> = (4 — B)(A4 + B) may be used in the form of the
rule 4> — B> — (4 — B)(A+ B) and the rule (4— B)(4+ B) —
A? — B?. There are elementary transformation rules, like 4 +0 — 0,
and complex transformation rules, like the use of b> — 4ac to factor
ax® + bx + c.

The main inference mechanism in solving an algebraic problem is
to apply correct transformation rules that preserve the equivalence of
sub-expressions (or the whole expression, which is a particular sub-
expression). This mechanism, called replacement of equals (Dersho-
witz and Jouannaud, 1989), can be decomposed into the following
steps:

(1) Matching: determine the applicable rules.
(2) Strategy: choose an applicable rule.
(3) Application: apply the chosen rule.

As problems are not always solved in a direct way, there is another
strategic aspect that consists of deciding between continuing on the
current path or backtracking to a previous step to try another path.

Matching consists of finding a sub-expression £/, a transformation
rule R and a substitution S between the variables of the rule and some
expressions in such a way that replacing the variables by these
expressions in the left hand side of the rule provides an expression
equivalent to E1. For example, the rule 4> — B> — (4 — B)(A + B) is
applicable to the sub-expression 4x> —1 of the expression
(2x — 1)(x + 3) 4 4x? — 1 because its left hand side 4> — B> matches
4x? — 1 with the substitution [4: 2x, B: 1].

Applying an applicable rule R with a substitution S consists of
replacing the right hand side of the rule by the expressions of the
substitution and replacing the sub-expression £/ by the result. In the
previous example, one first applies the substitution to (4 — B)(4 + B)
and gets (2x — 1)(2x + 1), then replaces 4x> — 1 by the result and gets
the new expression (2x — 1)(x +3) + (2x — 1)(2x + 1).

Describing in detail the application of a transformation rule R
consists of providing R, EI, S and the result. At school, usually
only partial descriptions of this process are given. Sometimes, in-
stead of indicating the precise rule, one indicates a family (e.g.,
reduction); often E1I is not indicated; and S is often never shown.
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2.2. Command-Based ILEs for Algebra

Command-based ILEs are systems in which the student has to
choose, at each moment, a command to perform an action. All the
existing ILEs for algebra are command-based systems in which the
commands are based on transformation rules.

PAT (Koedinger et al., 1997) contains a module devoted to the
formal solution of linear equations of one variable. To solve an
equation, the student chooses a command corresponding to a
transformation rule in a menu. Then she performs a part of the
matching by indicating one side of the equation or the whole equa-
tion. The rest of the matching is done by the system. The result is
provided by the student or the computer, depending on the option
setting. This overall mode of interaction is possible because of the
narrowness of the domain: (1) there are not many rules, and (2) there
are no complex expressions that would require a more precise
matching. With paT, the student can make calculation errors in terms
of the “‘result provided by the student”; matching errors are not
directly considered in this system.

MATHXPERT (Beeson, 1990, 1996) is a command-based system that
contains a lot of commands corresponding to transformation rules
for solving problems from a large domain. In order to avoid the need
for selection in very large menus, the author implemented contextual
menus. The basic interaction mode is the following: (1) the student
selects a sub-expression by drawing a rectangle over it; (2) the system
presents a menu composed of all the rules that are applicable to this
sub-expression; (3) the student chooses a rule; (4) the system applies
the rule. This interaction mode has some drawbacks: some rules are
not easy to recognize (due to the difficulty of naming rules that are
usually applied without being named in pen and paper calculations);
the matching of the system is sometimes limited (see Figure 1) or
ambiguous (see Figure 2). With MATHXPERT, the student is prevented
from making matching or calculation errors.

ess as polynomial
(2x-4)(x+3)+(x-2)(x+1) \?rci’;itasaiuanwialin?
put terms in order
a+h = b+a
x=74{x-7)

Figure 1. The matching of MATHXPERT does not find the common factor x — 2, so the
identity ab + ac = a(b + ¢) is not proposed in the menu. Even advanced students will have
first to factor 2 out of 2x — 4 before factoring x — 2 out of the whole expression.
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ra 5 write it as a polynomial in ?
X' _x“_0 a2+2abb? = (a+d) 2

' : a2-2abtb? = (a-b) 2

factor quadralic trinomial

use quadratic formula

complete the square

x34(2p-g°) x24p2=(x2 - g +p) (xZ +gx+p)
guess a factor

search for linear factor

a2-b2 = (a-b) (a+d)

a®-b* = (a-b) (a*1+,, 4b%1)

factor polynomial numerically
x=7+(x-7)

Figure 2. The matching of some rules is done by MATHXPERT on a sub-part of a sum. This
example is a case of the rule coming from the identity > — »* = (a — b)(a + b). In the

above situation, this rule is applicable to x* — x* and to x* — 9 and the application is made

onx* — x?; as it is not possible to select x* — 9, it is difficult to apply the rule on x* — 9 (one

needs first to select —x> — 9 and to commute it with the identity a + b = b + a).

The first ILE we developed (Nicaud et al., 1990) was devoted to
factorising polynomial expressions. It was a command-based system
in which some of the rules were grouped under the two concepts
reduction and expansion and in which the rules for factorisation were
detailed rules. The idea was to require the indication of a precise rule
for the rules under study by the student and just the indication of a
group for the well-known rules. Matching was done by the student in
an explicit way, as shown in Figure 3. The calculation was performed
by the system. With this system, the student could make matching
errors but could not make calculation errors.

Note that the aim of these short descriptions has been to show
three different interaction modes based on a common idea

FACTOR A2-B2
a=[x-1 | e[z ]

Figure 3. The student chooses Factor 4> — B? in the action menu. Then this window is
opened and the student has to select a sub-expression and to input the values of the
variables of the rule. When the command is incorrect, informative feedback is provided;
when the command is correct, it is applied by the system, going forward a step in the
calculation.
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(commands based on rules) in order to establish the background for a
new interaction mode for another kind of system. Our aim here is not
to criticise the effectiveness of these other systems, which have
empirically proved helpful in learning algebra.

A natural question arises: Why has the general paradigm for
building ILEs for algebra been limited to the use of commands
associated with transformation rules? We think that the main reasons
are: (1) this is a very natural method for ILEs designers, as trans-
formation rules are the fundamental mechanisms for solving alge-
braic problems; (2) this is the easiest method when the domain is not
limited to linear expressions; it avoids the building of complex tools
for editing algebraic expressions and for verifying calculations.

2.3. Our Mains Goals and Principles

The designers and developers of the APLUSIX system, the two first
authors of this article, are researchers in computer science. They
began to work on this project in September 2000 in the University of
Nantes. In September 2001, they moved to the Leibniz laboratory at
Grenoble, joining a team devoted to mathematics education. The
third author is a researcher in mathematics education of this team
mainly working on experiments of APLUSIX in middle and high
schools.

The first main goal of the designers was to develop an ILE for
algebra allowing the student to freely build and transform algebraic
expressions, and providing epistemic feedback that can help in learn-
ing algebra. One classical situation in an algebra classroom is the
following: The teacher gives exercises to the students who try to solve
the exercises on paper, writing their calculations without constraints.
The teacher goes from student to student and acknowledges the cor-
rectness of a student’s solution or helps correct errors. We wanted to
implement a model of activity close to this one, with a system having at
least a mode with the following properties: (1) it allows easy inputting
of the student’s calculational steps; (2) it verifies the student’s calcu-
lations at each step; (3) it verifies the correct termination of the solu-
tion. We had in mind allowing at least the two following situations:

(1) the student is working in a computer class with a teacher: In this
case the student can have feedback at each step; the teacher no
longer has to verify the student calculations and can better use
his or her time;
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(2) the student is working alone at school or at home: in this case,
s/he is no longer able to receive personal teacher feedback.

Let us call this way of functioning of the system in both these situ-
ations the basic training mode.

The second main goal was to create an ILE that could be widely
distributed and used. As designers of advanced ILEs for algebra, we
were not satisfied by the situation in which we found ourselves,
building ILEs used only for experiments: This is too much work for
too little use. This goal requires building an easy to use and useful
system. We considered two main points for usefulness: Encompassing
a large mathematical domain and having several modes of func-
tioning (the basic training mode, a test mode without feedback, a
mode having a few CAS-like commands, etc.).

2.3.1. The Microworld Idea
The first goal led us to enter the mathematical microworld para-
digm. According to Laborde (1989), a microworld is a world of
objects and relationships between objects. A set of operators allows
acting on objects and creating new objects with new relationships —
and direct manipulation is a possible way for acting on objects.
Balacheftf and Sutherland (1994) introduced the idea of epistemic
domain of validity, concerning the connections between the repre-
sentations and their meanings; we apply their ideas to APLUSIX in
the Conclusion. According to Thompson (1987), the function of
mathematical microworlds is not directly to instruct the student,
rather they must facilitate the construction of objects and rela-
tionships and allow the student to concentrate on the construction
of meanings.

We consider microworlds for algebra to have the following char-
acteristics:

— the concrete objects are algebraic expressions;

— the basic relationship is the structural relation (Kieran, 1991), i.e.,
the composition of expressions with operators (e.g., 12 is the first
argument of the second argument of /x/(12 4 x?));

— a second relationship is the equivalence between expressions;

— operators of the first type are linked to the structural relation, they
allow the editing of algebraic expressions in a way that takes care
of the structure, e.g., x +2 cannot be selected in 3x + 2y; the
replacement of x by y — 2 in 3x + 4 provides 3(y — 2) + 4;
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— operators of the second type are linked to the equivalence of
expressions, they are mechanisms that produce steps in reasoning.

Command-based ILEs can be seen as microworlds using operators
of the second type. This is the view for example of Cerulli and
Mariotti for L’ALGEBRISTA (Cerulli and Mariotti, 2000). In this paper,
we consider systems having at least operators of the first type and
some direct manipulation mechanisms.

2.3.2. The Educational CAS Idea

CASs are command-based systems in which the commands can be
regarded as types of problems: The user asks the system to expand
or factor an expression, to solve an equation, etc. The idea of an
educational CAS is to implement such commands in limited areas,
for example implementing a command performing numerical cal-
culations only over the integers or a command solving equations
only when they are linear. In this context, the student has to do part
of the work (at the higher level) whilst the computer accomplishes
the remaining work. These commands have important differences
from commands based on rules: (1) just a few commands are nec-
essary (see Section 7); (2) the commands are easy to understand
because the teacher gives names to the types of problem; (3) they
are not obligatory — the student can work without them — and they
can be hidden when the teacher wants to avoid scaffolding. The use
of an educational CAS can also be seen as a transition between the
usual school situation, where the student performs all the calcula-
tions, and the use of a CAS at university level, where the computer
software may solve the entire problem.

2.3.3. The Parameterisation Principle

An ILE may be seen as a computer system providing tools, feed-
back and constraints to the student. The parameterisation principle
consists of having large sets of tools, feedback and constraints that
can be active or not, depending on parameters (which can also be
called option settings) which are set for some duration by someone
(the teacher, a tutor, or the student). Furthermore, lists of exercises
may be set-up, associated with particular values of the parameters,
which are appropriate for the student to solve in a particular situ-
ation. This principle has been applied in the development of the
APLUSIX System.
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2.3.4. Our Teaching Ideas and Goals
The design of ApLusix was guided by the following ideas:

— the learning of algebra requires an important element of practice
eXxercises;

— technology can help the learning of algebra by producing and
assembling good tools; it can help both the student and the tea-
cher.

— In order to have a chance to be widely used, ILEs for algebra
must:

e be based on easy-to-use tools,

e be linked clearly to fundamental algebraic properties,

e allow students to make errors, and provide feedback on them,
e apply to a relatively large domain of algebra.

Our main question then was: What are the good generic tools that
we can build and which can help the learning of algebra by providing
good interaction and feedback?

These ideas are not directly linked to a particular learning theory.
The choice of a particular combination of tools (by setting different
options), the choice of the exercises and the way a teacher intervenes
during the sessions may suit one learning theory or another. For
example, the teacher can prepare a situation using the ILE which
favours the discovery of some property by students or, in contrast,
use the ILE for drill and practice.

3. TWO EXAMPLES OF THE USE OF APLUSIX

In order to help in understanding the rest of the paper, we describe
here two examples of the use of aApLusix. The first example, Figure 4,
concerns the basic training mode and is extracted from the experi-
ment described in Section 9. The second one, Figure 5, concerns the
use of CAS-like commands.

4. EDITING ALGEBRAIC EXPRESSIONS

Until recently, editing algebraic expressions in computer systems was
very awkward. Most of the systems used a 1D (one dimension) editor
and a 2D display: The user enters an expression as a string, e.g.,
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| (x+2) (x-3) = (x+2) (x-4) |som [ (x+2) (x-3) = (x42) (3-4) |som
| ;
(x-3) = (x-4) (x-3) = (x-4)
1) Mary duplicates the given equation. Then, she |2) She clicks on the verify button. She gets a red
selects and deletes (x+2) on each side. and crossed arrow indicating a non-equivalence.
| (x+2) (%-3) = (x+2) (x-4) ]som | (+2) (3-3) = (3+2) (5-4) [sawe
]
| x%-x+2x-5= x°-4x+2x-8| l | x2-x+2x-5= x2-4x+2x-§ |
3) Mary deletes the equation of the second step and | 4) She clicks on the verify button and gets again
inputs an expanded form of the given equation. a non-equivalence answer.
| (x+2) (x-3) = (¥42) (3-4) |som | (x+2) (x-3) = (x+2) (x-4) |sam
| |
[22-3x+2x-6=x*-4x+2x-8 | [x2-3x+2x-6=x2-4x+2x-8 |
5) Mary deletes on the lefi-hand side 5 and inserts | §) She clicks on the verify button and gets a
6. Then she changes —x into —3x. confirmation of equivalence.

Figure 4. Beginning of the solution of the exercise “Solve the equation
(x+2)(x —3) = (x+2)(x —4)” by a real student, Mary, grade 10, in the basic training
mode. The equivalence between two steps is indicated to Mary when she clicks on the
verify button.

(3*x"2)/(y + 1), after that, the system displays the expression in two
dimensions. Recently, 2D editors have begun to appear.

In this section, we will analyse the main functions of 2D editors for
algebraic expressions, i.e., editors that display the expressions in the
usual 2D representation and that allow modification of expressions in
this representation. Our basis for this description is twofold: For each
action that can be executed by an editor, we consider on the one hand
the general principle that is used by most computer systems for this
action, in particular by text editors (e.g., the general principle for
delete over a selection is suppress the content of the selection), and on
the other hand the structure of the algebraic expressions that suggests
certain behaviours. In the following we often say The natural idea for

. is ... in which the natural aspect is based on our opinion, that is,
what we consider to be natural behaviour.

4.1. The Syntax of Algebraic Expressions

In Rewriting Rule theory (Dershowitz and Jouannaud, 1989), an
algebraic expression is defined recursively as the application of an
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2 {5 + 2= 4[5 2v- 153
3x-2{2y=-2 3x-2ZTy=-2 3x-2{2 y=-2
1) Peter selects 2y 2) He drags v2y and drops it on | 3) He hits the “minus” key.

the right hand side.

> | -] | [
e 1Ty [ s

3x-2{2 y=-2 131—2{?)’: -2 {m—lﬁyz -2

4) Peter deletes 2 on the left,|5) He selects the value of x and |6) Then he selects x in the
changes 4 to 2 on the right and | makes a copy in the clipboard. | second equation.

inserts 2 as denominator of V'Ey

[} 2
x=2- z,v x:‘_’—Ty x=2- {sz
s -2z y- -2 b5 - R
7) And makes a paste that|8) Then he selects the left hand | 9) And he applies the “expand
produces a substitution (the|side of the second equation. and reduce” command using the
parentheses are added by the pOp-up menu.
system),

Figure 5. Example of how to solve a system of equations using drag&drop and the
command “Expand and reduce”.

operator (like +, *, ") to arguments, respecting arity (i.e., number
of arguments) and expression types. The arguments are expressions.
The elementary expressions are digits and symbols (like x, m, ).
The operators are mechanisms that build expressions, not functions
that calculate something. For example, the + operator for building
expressions applied to 2 and 3 generates “(+ 2 3)” in a prefixed-
parenthesised representation (2+3 in the usual representation).
Note that this must be distinguished from the addition function that
gives 5 when applied to 2 and 3. The representations for algebraic
expressions which are close to this definition are the prefixed-pa-
renthesised representation and the tree representation, because there
are natural and unambiguous mappings between these two repre-
sentations, and with the definition. For example, let’s take the
expression 3x? + 2x (in the usual representation), this expression is
defined as the application of + on two expressions b and ¢, where b
is the product of 3 and d, d is the power of x with exponent 2 and ¢
is the product of 2 and x. The prefixed-parenthesised representation
is (+ (3 (" x2) (*2x)) and the tree representation is shown in
Figure 6.
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/ " \/ \\/ *\
3 /A 2 X
X 2

Figure 6. A tree representation.

Expressions are viewed in a broad sense in this paper, in the same
way that they are in rewriting rule theory. Thus for example Boolean
expressions are included, e.g., 2x = 3 or 3x = 1 is an expression with
the operator or applied to the Boolean sub-expressions 2x = 3 and
3x=1.

In this syntax, expressions may be well-formed or not. A well-
formed expression is the application of an operator to other
well-formed expressions respecting the arity and types. An expression
is ill-formed when the number of arguments of an operator is
incorrect (missing arguments or too many arguments) or the type of
an operator is incorrect (e.g., or applied to a non-Boolean expres-
sion). Some types may have a contextual definition, for example
exponents could be restricted to the type “natural number” at some
learning level.

4.2. The Usual Representation of Algebraic Expressions

The usual representation of algebraic expressions is a 2D repre-
sentation. It consists of symbols and lines placed in a 2D display.
This organisation contains an important 1D sub-organisation:
some parts are sequences of symbols that can be seen as text, and
some operators can be seen as text operators because they are
placed on the left, on the right or between their arguments (e.g.,
+, —, sin). Other operators have specific places for their arguments
in 2D space (e.g., power, divide, square root). The usual repre-
sentation also has hidden operators (e.g., times in 2x, composition
of integers in 23), and implicit priorities between operators and
parentheses.

From a 2D view, an expression can be seen as an organisation of
text sequences and boxes having invisible borders, cf. Figure 7.
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2X+y-2
xX-2y

X+2

Figure 7. Text and box structure in the 2D view. The borders of the boxes have been
drawn.

4.3. The Text&box Mode and the Structure Mode

Let us now consider designing a 2D editor of algebraic expressions for a
computer having a keyboard and a mouse. By 2D editor, we mean a
system that displays algebraic expressions in the usual 2D representa-
tion and that allows modification of expressions in this representation.

We wish to consider the classical actions of an editor: place the
cursor (the insertion point), move the cursor, select part of an
expression, input or delete at the cursor position or over a selection,
copy or cut a selection, paste at the cursor position or over a selec-
tion, and drag&drop.

In text&box mode, expressions are seen as strings of characters or
boxes. If x 4+ 3 is copied in the clipboard and if the cursor is between 2
and y in 2yz , a paste in the fext&box mode provides 2x + 3yz, and
the pasted expression is not a sub-expression of the result.

In structure mode, the actions are executed with respect to the
algebraic structure. For example, if x 4+ 3 is copied in the clipboard
and y is selected in 2yz, a paste in the structure mode provides
2(x 4 3)z because the sub-tree y of 2yz is replaced by x + 3.

There is a third mode which can be envisaged where the expres-
sions are seen as parts of the 2D space. In such a mode, a drag&drop
of y in xy, a little above the expression, would produce x*. We will
not analyse this mode any further, and just consider below the
text&box mode and the structure mode.

Designers of editors of algebraic expressions have to assign a
mode to every action. They can also implement some actions in
several modes and leave the choice of the mode to the user.

4.4. Missing Arguments

An editor should not only work with well-formed expressions. For
example, when we input a + x by typing successively a, +, x, we have
an intermediate stage of an ill-formed expression a+ that has a
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missing argument. This is not a problem in a tfext&box mode but it is
a problem in a structure mode, because of the underlying tree
structure. A natural solution for this problem is to add empty
arguments represented by question marks or small boxes. This is the
choice for example of the editor in FRAMEMAKER which displays a + 7
when a+ has been typed, and this is also our choice for APLUSIX.

4.5. Input at the Insertion Point

In the text&box mode, there are two ways to execute an input. The
first is to insert a character at the cursor position, and the second is to
create a box for a box-operator such as a fraction or a square-root.
For example, MATHTYPE works in this mode with a virtual keyboard
for box-operators and special characters (see Figure 8). In this mode,
some operators may have two representations, e.g., for fractions
(Figure 8).

In the structure mode, the juxtaposition of arguments has to be
interpreted in any situation to get the underlying tree representation.
A natural interpretation consists of viewing a juxtaposition as a
construction of a number for digits (e.g., the input of 4 after 2 in 2x
provides 24x such that the integer 24 is built), as the construction of a
function symbol when this is possible (e.g., the input of n after i in six
provides sin x so that the function symbol sin is built), and otherwise
as a product.

In the structure mode, there are no unbalanced parentheses. One
gets two balanced parentheses around an empty argument when one
clicks on the parentheses button or strikes a parenthesis key. This is
different from the usual left to right typing and has the following
important drawback. Let us consider that we have the expression
(x+2)(x+1)4+(x+3) and that we want to change this to
(x+2)((x+ 1) + (x + 3)); we cannot simply insert a ““("” at one place
and a )" at the other place.

<zz| jab- | ¥EE| £+® | o=l
) £ o Zazn| o ds

=

Figure 8. a part of the virtual keyboard of MATHTYPE. This system allows to input a
“unconventional” expression such as (2 + 3 (% + c/d) + 5) in which the small parentheses

and the “/”” are made by key strokes while the large parentheses and the 2D fraction are
made using the buttons of the virtual keyboard.
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Virtual keyboard
Undo HRedo Cut Copy Paste Another paste
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Figure 9. The virtual keyboard of apLusix: There are six buttons for box- operators.

In the structure mode, we can propose to respect at all times the
types of the arguments, refusing to allow 2x = 3 or 3x because 3x is
an argument of or and is not a Boolean expression. However, this is a
natural intermediate step when we input 2x =3 or 3x =2 one
character after another. If we want to have the constraint on argu-
ment types, the above expression would have to be typed in a par-
ticular sequence: input “="" after or, providing 2x = 3 or 7 = 7, then
input the two arguments of “="". So the argument type constraint in
structure mode can lead to rather complex rules for input.

Our choices for ApLUSIX are mainly oriented towards the structure
mode in order to get more “algebraic” behaviour from an editor.
However, we consider that the constraints of the structure mode for
the input are too strong and too far from the natural writing of
algebraic expressions. That is why we based input at the insertion
point on the fext&box mode and used a virtual keyboard with but-
tons for box-operators as well as for the other operators, digits and
letters (see Figure 9).

4.6 Selection

In the rext&box mode, any succession of strings or boxes can be
selected. So a selection in a well-formed expression is not necessarily a
well-formed expression. And even when a selection is a well-formed
expression, it is not necessarily a sub-expression (see Figure 10).

In the structure mode, the natural way to implement the selection
mechanism is to allow the selection of one or more sub-expressions

WERy+5 23+ 2x+3
X+

Figure 10. Three examples of selection in the zext&box mode from MATHTYPE.
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2
2%+ 5x° EB+ 254

Figure 11. Two examples of selection in the AprLusix structure mode. In the second
example, after having selected 2x, a control-click anywhere over —5x* extends the selec-
tion.

and nothing else (see Figure 11). This selection is then, a true alge-
braic selection.

We believe that selection in the structure mode is the best
selection mechanism both for advanced users, who generally work
on sub-expressions, and for beginners who may be learning about
the structure of expressions through selection. We therefore
implemented this structured selection mechanism in APLUSIX as
follows: When two parts of an expression are covered by a mouse
movement, the smallest sub-expression containing these two parts
is included in the selection. For example, in (2x + y)(z+ 1) — 2, let
us drag left to right over x, x is selected; when we continue over
+, the selection is 2x + y, when we continue over )", the selection
is (2x+y), when we continue over ‘(" the selection is
(2x+y)(z+1).

4.7. Input Over a Selection

The general principle for implementing an input over a selection
consists of replacing the selection by the input, whatever it is. In the
text&box mode, this is quite natural.

In structure mode, we can separate the case of the input of a
digit or a letter (which are elementary well-formed expressions)
from the case of an operator; we can use the general principle for
the first case, and another principle for operators which is apply
the operator to the selection. For unary operators, like structured
parentheses, minus and square root, this is very natural, e.g., 2x
being selected, a click on the square root button providesy/2x. For
operators having more than one argument, an argument must be
chosen as the “main” argument. For example, 2x being selected, a
click on the fraction button provides 2x/7, the main argument of a
fraction taken to be its numerator. Note that this action may
introduce parentheses, e.g., the application of “~” to x+2 pro-
duces —(x +2).
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MATHTYPE implements the fext&box mode for key strokes and
application of the operator for most of the operators of the virtual
keyboard. So, 2x being selected, a key strike on “(” provides “(”
while a click on the parentheses button provides(2x).

For apLusix, we implemented the structure mode with the fol-
lowing features:

— when the selection begins by a minus sign, the input of a minus
sign cancels this minus sign, e.g., applying “— on —2x provides
2x instead of —(—2x); we think that this corresponds to the
expectation of users in most situations;

— we implemented two fraction buttons, one for putting the selec-
tion as a numerator, the other for putting the selection as a
denominator (see Figure 9);

— when the operator is a relational operator (= < < > >#) or an
operator having a variable arity (+, X, and, or), we decided for the
program to do nothing, in view of the fact that there is no natural
way to do such input over a selection.

4.8. Delete

The general principle for implementing delete on the right or the left
of the insertion point consists of deleting the object (character or
box) at this place and, for implementing delete over a selection, of
suppressing the content of the selection. In the fext&box mode, this
is natural, but it is sometimes awkward. For example, if we want to
delete the denominator of a fraction, keeping just the numerator
without the fraction line, we must select the numerator, perform a
copy, select the fraction, hit the delete key, then paste the clipboard.
MATHTYPE, for example, implements this behaviour using text&box
mode.

In structure mode, the natural method consists of deleting an
argument of an operator and either replacing it by an empty argu-
ment or deleting the operator. For example, the cursor being before y
in x + y, delete can provide x 4+ 7 or x. When the cursor is over a
question mark, it is natural to suppress the operator, e.g., with x/v/7,
the question mark being the cursor point, a first delete provides x/?
and a second delete provides x. This is a better way to solve the
problem mentioned in the previous paragraph, and we implemented
the structure mode in APLUSIX.
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4.9. Copy, Cut, Paste, Drag&Drop

The general principle for copy and cut is:

— Copy consists of placing a copy of the selection in the clipboard,
— Cut is copy plus delete.

This is a natural method for algebraic expressions. The difference
between text&box mode and structure mode comes from the selec-
tion. The consequence is the following: After copy or cut, when the
entire expression is well-formed, structure mode always put a well-
formed expression in the clipboard while text&box mode can enter an
ill-formed expression.

The general principle for paste at the cursor position is to insert
the content of the clipboard at this position. In the fext&box mode,
this is natural, but it may have strange results. For example, paste
x + 1 after 2 in 2y provides 2x + ly. Paste at the cursor position in
structure mode needs an operator. For example, paste x + 1 after 2
in 2y with the operator x provides 2(x + 1)y and with the operator
+ provides 2 + x + 1 4+ y. There are two main ways to choose the
operator: the first consists of presenting a menu to let the user
choose the operator; the second consists of choosing an operator
using a principle such as considering the operator at the cursor
position.

The general principle for paste over a selection is to delete the
selection and to insert the content of the clipboard at this position. In
text&box mode this is natural, while in structure mode the natural
method is to replace the selected sub-expression by the clipboard. For
example, a paste of 3y + 1 over x in 2x + 5 provides 2(3y+ 1)+ 5
performing an algebraic substitution of x by 3y + 1.

The general principle for drag&drop is cut a selection and a paste at
the cursor position. This is a natural idea for both text&box mode
and structure mode. The behaviour is different between the two
modes because paste at the cursor position is different.

MATHTYPE implements the text&box mode for copy, cut, paste, and
drag&drop.

We implemented structure mode in ApLusix for these functions.
Concerning the choice of the operator for paste, we decided to only
consider operators of variable arity (composition of numbers, +, X)
in non-Boolean expressions and (and, or) in Boolean expressions, and
to choose the most appropriate, taking into account the operator at
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the cursor position and the main operator of the expression to be
pasted. We implemented a menu item called another paste allowing
changing the operator.

4.10. Discussion

Although apPLUSIX is a computer system for education, our thinking
process and our choices were not oriented toward education for the
editor because we consider that the writing of algebraic expressions to
be universal and that it is better to design a universal editor. Of
course, the editor of APLUSIX is not universal because many standard
operators are missing (trigonometry, exponential, integral, matrix,
etc.), but the implemented mechanisms are universal.

In the development of ideas for an editor and its implementation
in APLUSIX, we made many choices. We did not perform experiments
beforehand in order to compare different possible choices for the
following reasons: (1) we were guided by the idea of an algebraic
microworld with operators of a first type linked to the structural
relation of the expression (cf. Section 2.3.1); (2) our professional
background in mathematics and school teaching gave us some
expertise in making choices; (3) experiments done before development
may provide misleading results because they are not carried out in a
real situation, as the system is not available; (4) the editors of existing
systems provide examples of behaviour that can be adopted, and
improved particularly from an algebraic point of view.

5. ALGEBRAIC REASONING BY EQUIVALENCE

We have chosen to limit the scope of APLUSIX to reasoning by
equivalence, as presented in Section 2.1. This is also the case of the
other ILEs for algebra with which we are familiar. Within this model,
the inference mode is the application of transformation rules that
preserve the equivalence.

5.1. The Denotation of Algebraic Expressions

Algebra is a domain with fundamental semantics, usually called
denotation (Arzarello et al., 2001; Nicaud and Bouhineau, 2001). It is
based on a set of numbers K (in education, this set is successively
expanded during the learners’ progress: integer, decimal, rational,
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real, complex numbers). The denotation of a non-Boolean expression
E with variables x;, ... , x,, is the function from K" to K that asso-
ciates £ to x;, ... , x,. For a polynomial expression, an alternative
denotation of the expression E is a polynomial of n variables. The
denotation of a Boolean expression E with variables xi, ..., x,, is the
function from K" to {false, true} that associates E to xi, ... , X,,. An
alternative and equivalent denotation of the expression FE is the set of
solutions of E in K. The denotation defines the equivalence between
expressions: Two expressions are equivalent if and only if they have
the same denotation.

5.2. Presentation of Reasoning

Algebraic reasoning can be presented by mixing natural language and
algebraic expressions. At school, students are invited to place the
expressions of their calculations on successive lines, generally with
commentaries that indicate which transformation rules are applied.
The notion of reasoning by equivalence is more or less explicit,
depending of the curriculum. Sometimes, the implicit framework is
reasoning by equivalence, and the presentation does not explain it.
This is the case when students solve systems of equations, making
calculations first on one equation then on another.

The concept of backtracking is connected to reasoning by equiv-
alence: when a sequence of calculations is not promising, one can go
back to a previous step and try another direction with another
transformation rule. This is a strategic issue. It is not necessary to
delete steps 3 and 4 of a reasoning to execute a backtrack to step 2 if
steps 3 and 4 are correct: The new direction taken in step 2 may be a
dead-end so that finally one has to continue from step 4. This concept
of backtracking is mostly absent from the school curriculum. Fur-
thermore, it is difficult for students in a paper-pencil context, because
when they find themselves at a non-promising step, the reason may be
that their calculations are incorrect. So students generally go back to
a previous step and cross out all the following steps.

In ApLuUsIx, we chose to have a strong reification of reasoning.
Expressions are placed in boxes and lines are drawn between boxes,
whose first meaning is this box is obtained from that box. A second
meaning is given by these lines. As the calculations are made by the
student, they may be correct or not. When they are correct, the two
expressions are equivalent and the line is drawn as an equivalence
sign for Boolean expressions and an equal sign for non-Boolean
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Figure 12. Peter is at a level where efficient methods for factoring ax? 4 bx + ¢ forms are
not known to him. At this stage, a good strategy for factoring polynomial expressions
consists of applying factorisation rules. So Peter used first the partial common factor x — 2
expecting a common factor afterwards. As his expectation failed, he went back to use the
other partial common factor x + 3. His calculations are correct, except the last one. The
error is indicated by a red cross over the equivalence sign.

expressions. When they are not correct, the two expressions are
generally not equivalent and the line is drawn as a red equivalence
sign, or equal sign, with a red cross. Figure 12 show a piece of rea-
soning containing a backtrack which was made by a student with
APLUSIX.

This form of presentation of reasoning, with links between steps
and a tree when a backtrack occurs, is also present in ALGEBRALAND
and was used in our first ILE. In MATHXPERT no links are presented
and, although the system treats more difficult problems, it does not
include backtracking.

5.3. Verification of Equivalence

Currently, ApLUSIX calculates equivalence of expressions over the real
numbers, by calculating the denotations of the expressions to be
compared. For rational expressions, we calculate the rational fraction
as a pair of polynomials (for any number of variables and any degree).
For polynomial equations and inequalities of one variable, we cal-
culate the solution sets (currently only for degree less than or equal to
4 with the discriminant, Cardan’s and Ferrari’s formulac). We
transform rational equations in polynomial equations. For systems of
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linear equations, we calculate the solution sets (maximum 10 equa-
tions and 10 variables).

As far as we know, this is a novel feature of ApLUSIX compared
with other educational software for learning algebra. Other systems
are action-driven, with the action being performed by the computer.
In such conditions, since the student does not input his/her own
results then the system does not need to verify the calculations. Note
that the indication of the equivalence is linked to an option setting in
APLUSIX. The teacher can choose to activate continuous verification
(that is, recalculated at each modification), or verification on demand
(when the student clicks on the verify button), or to deactivate veri-
fication altogether.

There is a difference between correct calculations and equivalent
expressions. The correct use of a rule, coming from an identity,
always produces an equivalent expression, but an incorrect rule
sometimes produces an equivalent expression. For example, if a stu-
dent “moves” 3(x — 2) from the right to the left of 6x — 12 = 3(x — 2)
without changing the sign, s/he makes an incorrect application of a
transformation rule and gets 6x — 124 3(x — 2) = 0. However, in
this particular situation, the result is equivalent because both equa-
tions have the unique solution 2. Fortunately, such a situation is very
rare (for such moves in polynomial equations, the moved expression
must be equal to zero for any solution of the equation).

6. EPISTEMIC FEEDBACK

Feedback is a major feature of microworlds. The first level of feed-
back consists of displaying objects after they have been modified. The
second level consists of providing conceptual or semantic information
(Hollan et al., 1984).

Concerning formal algebra, important semantic feedback con-
cerns the correctness of the calculations. Because it is linked to
denotation, we discussed this issue in the previous section.

Other interesting elements of feedback are indications about
general properties of expressions having an important role for many
problem types. For example, reduced is a basic concept, and the sort
concept is interesting because there are many situations where there is
a preferred order for commutable expressions.

A very important element of feedback is the solved property:
Telling the student whether the problem is solved or not. In fact, this
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concept depends on the problem type so a solved feedback can be
implemented for certain problem types, but a general feedback
mechanism for solved cannot be implemented.

When we go into specifics, we do find a major problem concerning
these properties. Are they epistemic (pure algebraic properties) or
didactic, in the sense that constructions change from one teacher to
another, or from one level of learning to another?

In the following we describe some concepts we studied and
implemented in APLUSIX.

6.1. The Factored Property

Let us analyse in some detail the concept of an expression being
factored. This concept is often introduced this way: An expression is
factored if it is expressed as a product. At some level, problems given
to students can be arithmetic factorisations (e.g., 3 X4 + 3 x 7) or
algebraic (such as 3a+ 6b or ab + 2a). At a higher stage, students
may have to factor x(x+2)+2(x+2), where (x+2)(x+2) is a
result and (x + 2)2 is a better result, because it is reduced. But this last
expression is not a product. It is also natural to consider that
—(x+ 2)2 is factored although it is not a product and that x + 1 is
factored because one cannot produce a more factored form. Is
3(x? + 4x + 4) factored? Yes, in a sense, but it can be further factored
to 3(x+ 2)2 and in many cases non-constant factors are more
important than constant factors. Thus, the factored property is
basically didactic because it changes from one level of learning to
another.

Implementing didactic concepts in a generic ILE is a problem. One
solution consists of choosing among the different possibilities during
the program design. But it is possible that some teachers will not like
the choices that are made. Another solution consists of implementing
several forms of a concept and options for choosing the form to be
applied by the program. We believe it would probably be difficult for
the teacher to choose the options and even more difficult for the
student. Hence for aApLusiX we chose the first solution, considering
that the second is contrary to some of our ideas presented in Section
2.3.4 (to have a system that is based on easy-to-use tools, and linked
to strong algebraic properties). This led us to define two concepts for
factored. P-factored and N-factored.

P-factored (P standing for polynomial) is limited to polynomial
expressions of one variable and this property indicates whether a
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polynomial expression has the form of a product of prime polyno-
mials. This property depends on the set of numbers used (prime
polynomials being first degree polynomials over the complex num-
bers and first degree polynomials or second degree polynomials
having a discriminant less than 0 over the real numbers). Syntacti-
cally, a P-factored expression is a composition of prime polynomials
with the operators times, power, and minus. This is a Boolean defi-
nition of the concept. P-factored can also be defined as a sort of
degree indicating the number of prime polynomials that are factored
(e.g., value 0 for x’—x, 1 for x(x>-1), 2 for x(x—1)(x+1)). We
implemented this form of P-factored in apLusIX with a gauge to
indicate the ratio between the number of prime polynomials that are
factored over the number of prime polynomials of the totally factored
form.

N-factored (N stands for numerical) is limited to expanded poly-
nomial expressions of one variable and indicates whether numbers
have been factored or not. There is not a unique way to define
N-factored, for example:

— Is 2x? 4+ x/2 N-factored or do we need to factor it into 1 (4x* + x)
or into 2(x? + x/4)?
— Is 2x+ /2 N-factored or do we need to factor it into

V2(V2x +1)?

Numerical factors are clear at a syntactic level when the same
numerical expression is a common factor, e.g., in (2 + \/E)
x2 4+ (2 + v2)x. Numerical factors are also clear at a semantic level
over the integers, e.g., in 15x? 4+ 6x — 9. We chose to combine these
two features to implement the N-factored property in APLUSIX.

6.2. Some Other Properties

A reduced property can be based on a set R of rewriting rules having a
reduction status (in a broad sense). Examples of reduction rules are:

A+0—A, —(-A)—A, A—A% %—%.

In order to create a strong concept of reduction, arithmetical
calculations (e.g., replacing 3+4 by 7) and arithmetical
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simplifications of fractions (e.g., replacing 12/15 by 4/5) must be seen
as reductions. So must the grouping of like terms in a sum (e.g.,
replacing 2x? 4+ 3x? by 5x?). In this framework, an expression e is
reduced if there is no rule of R applicable to a sub-expression of e.

Such a concept has been implemented in APLUSIX with a gauge
depending on the number of reduction rules that are applicable.

We implemented a sort property in the same way, using a set of
sort rules. Among these are: commute A and B in a product if A is a
number and B is not; commute two monomials A and B in a sum if
the degree of A is less that the degree of B.

We also implemented an expanded property based on the number
of parentheses in the expression.

We placed an indication of the state of the current step in the
status bar of the system. This state may be ““‘unachieved” (e.g., when
there are question marks), ‘“‘undefined” (e.g., when a denominator is
0), “out of domain” (e.g., for an equation of fifth degree) or “well-
formed”

6.3. The Solved Property

The solved forms of some problem types can be expressed in terms
of the above properties. For example, Factor a polynomial
expression may be seen as getting an equivalent form that is
P-factored and Reduced. However, the solved forms of equations
cannot be expressed with these concepts, so we implemented an-
other property called Equation that indicates a degree of progres-
sion towards a solved form for equations, inequalities and systems
of linear equations. The degree for equations is based on the
fraction of decomposed forms and expressions of the form x =a
(e.g., the degree increases when (x + 3)(x —2) =0 is transformed
into x+3=0 or x—2=0 and when x —2 =0 is transformed
into x = 2).

7. CAS-LIKE COMMANDS IN APLUSIX

7.1. Commands

Our idea for ApLusix was to have commands that look like the
commands of a CAS, corresponding to the types of problem we
wanted to present to students. We also wanted to have more powerful
commands for advanced students and less powerful commands for
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less advanced students. In the current version, we have implemented
four commands: calculate, expand-and-reduce, factor, and solve. The
calculate command means calculate the canonical form of a numer-
ical expression. An option setting allows for activation or not of this
command, and when it is activated, the choice of domain among
integer, decimal, rational and irrational expressions. The expand-and-
reduce command applies to polynomial expressions of several vari-
ables; it provides the canonical form of the polynomial. It can be
deactivated. The factor command applies to polynomial expressions
of one variable; it can be deactivated, active for polynomial expres-
sions of degree 1, or for polynomial expressions of degree less than or
equal to 2. The sol/ve command applies to equations of one variable; it
can be deactivated, active for equations of degree 1, or for equations
of degree less than or equal to 2. In the future, we will extend the so/ve
command to some inequalities and to some systems of linear equa-
tions.

To apply a command, the student has first to select a sub-
expression, then to choose the command in the menu. When the
command is applicable, the system makes the calculations and
replaces the selected expression by the result (this does not generate a
new step in the calculation). See the example in Figure 13.

Note that these CAS-like commands do not make ApLusix behave
like a CAS. A CAS solves a given problem. With ApLUSIX, the teacher
chooses the commands that are made available to students (corre-
sponding to actions that are well known to the students) and the

(x-2) (x%-1) = x (3x-6) |satve (x-2) (x*-1) CRBEEG))- 0

1) Jane calls up an exercise, 2) She selects 3(3x-6) and dragsddrops it on the left. The
sign is changed and 0 is placed on the right.

A ) P
(x-2) ( (x2-1) -3x] =0 (x-2) = Oor_( (x2-1) —3x) =0
3) Using insert and delete, she factors out (x-2). 4) Using insert, she puts an “or” between two equations.
E=2or ((xz—l) ~3xJ =0 x:20r‘x=—«%-~—-—'123orx= —%-+ ‘:123
5) Then she selects the first equation and applies | 6) Then she selects the second equation and applies the
the selve command. solve command.

Figure 13. example of use of the equivalent drag&drop and of the solve command. The
exercise is a third degree equation. The solve command allows solving of first and second
degree equations, so it cannot directly solve the exercise.
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exercises set for the students; whilst the commands can help to solve
the exercises they should not be able to solve them directly.

7.2. Direct Manipulation Preserving Equivalence

In a microworld, the use of direct manipulation is typically to allow
the movement of objects whilst respecting the relationships between
them. In algebra, this takes the form of manipulating sub-expressions
in a way that respects their structural relationships. This leads to the
structural drag&drop functionality which we presented in Section 4.9.
Sub-expressions can also be manipulated using equivalence rela-
tionships, which leads to having an “‘equivalent drag&drop’: moving
a sub-expression inside a global expression and preserving the
equivalence of the global expression.

Such functionality is implemented in the software called GRAPHING
CALCULATOR, allowing one to manipulate expressions algebraically
with the mouse and is described as “‘the calculator preserves equality
during manipulations”.

Moving arguments of a commutative operator is the first natural
form of equivalent drag&drop (e.g., moving 3x* to the left in
2x3 4+ x? + 3x* provides 2x3 + 3x* 4 x? if the drop is before 3x* and
3x* + 2x3 4 x? if the drop is before 2x3). In this particular situation,
the structural dragd&drop does the same thing if the drop is made with
the operator

A second natural form of equivalent dragd&drop consists of
“moving” an additive sub-expression from one side of an equation
(or inequality) to the other side, changing its sign (e.g., in
x? + 5x = —6 moving —6 to the left produces x> + 5x 4 6 = 0).

A third natural form of equivalent drag&drop consists of moving a
multiplicative sub-expression from one side of an equation (or
inequality) to the other side (e.g., in 5x = —6 moving 5 to the right
produces x = —6/5).

Other forms are proposed in Table I. They are based on factori-
sations or reductions.

The equivalent drag&drop functionality is not yet implemented in
APLUSIX. We will first implement it for the case of moving additive
and multiplicative sub-expressions. This will be useful for advanced
students (see Figure 13), but there will be an option to allow the
teacher to deactivate it since it is too powerful for beginners. It is not
yet clear whether other sorts of equivalent drag&drop actions may be
useful for the aApLUSIX system.
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TABLE I

Examples of equivalent drag&drop with basic operators

Expression Selected sub- Place of the drop Result Type of action
expression
322 —1+2> 2? Over 32 4% -1 Reduction
(y — 1)(z + ?) First occurrence  Between )( (y—1)xz(1 4+ ) Factorisation
of ©
(zy)* x Before ( % Factorisation
Vi+zx 4 Before the root  2,/1+7% Factorisation

8. SOME TESTS OF APLUSIX

From the end of 2001 to the end of 2003, we regularly organised tests
of the system with teachers of middle schools and high schools,
mainly for grades 9-11. The first goal was to test the software in order
to assess its utility and its usability. The second goal was to collect
data for a project aiming to model students algebraic thinking with
mal-rules (Payne and Squibb, 1990) and students’ algebra concep-
tions (Balacheff and Gaudin, 2002). This work is still continuing and
will not be presented in this paper. The first goal led us to organise
experiments from September 2002 to December 2003 to evaluate the
usability of the system.

Apart from a few special cases, all the tests of APLUSIX were made
by teachers of participating classes during regular school time.
Usually, there was one student per computer in computer rooms
having from 12 to 30 computers.

After these tests, the usability of the software was apparent to us,
at least for the basic functions (input, delete, make new steps). Classes
of 30 students were able to engage in a productive activity from the
beginning with very little help of the teacher. However, most of the
students did not naturally use the cut, copy, paste and drag&drop
functions. The use of these functions needed to be suggested. We also
noted that the difficulties faced by the students were mainly mathe-
matical in nature, as opposed to interface or usability problems with
the software.

8.1. Regular Use of APLUSIX in a Grade 9 Class

In December 2001, 18 students of a grade 9 (middle school) class used
the system several times a week (in Montfermeil in France). The class
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was a special one, with many students having deep difficulties with
mathematics. The students started learning expansion, simplification
and factorisation of simple expressions, and solution of simple
equations with ApLUSIX. Some students worked alone, others worked
in groups of two. Most of them needed just a few minutes to become
familiar with the software, even those who did not have significant
experience with computers. Some of them acquired a good mastery of
the drag&drop functionality.

The teacher noticed an improvement of the students’ interest for
algebra. All the students enjoyed going to the computer room. Some
of them, who generally were unengaged during lessons, began to ask
questions. They solved more exercises than usual and more difficult
exercises. The teacher noticed also that his relation with the students
shifted from the position of a judge (who decides what is wrong) to
the position of an interpreter (who answers questions and explains
errors).

8.2. A Test with Paper-Pencil Pre-test and Post-test

A test was organised in January 2002, with a small group of 8 vol-
unteers coming from different classes of the middle school of
Montfermeil. They worked outside their normal classes. The students
had a 30 min paper and pencil pre-test followed by a 90 min session
with the system. One week later, they had another 90 min session
with the system followed by a 30 min paper and pencil post-test. The
exercises all concerned linear equations and inequalities. Verification
of calculations was activated during the sessions and deactivated
during the tests. There was no classroom lesson on algebra between
the two sessions.

From the pre-test to the post-test, the average of the group
increased from 4.2 out of 10 to 7.9 while the standard deviation
decreased from 3.4 to 2.8. Besides this progress, we noticed, for some
students, an evolution in the presentation of reasoning, as shown for
example in Figure 14.

During the sessions, the students had the possibility of asking
questions of the teacher. Most of the questions were Is it finished? (at
this time, the system indicator for the end of the exercise were not
available) and Why is it not working? The latter question generally
arose from difficulties with fractions and negative integers. The
algebraic techniques used by the students in the post-test satisfied the
expectations of the teacher.
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Figure 14. The evolution of the presentation of reasoning for one student.

9. A ONE-YEAR-LONG USE: APLUSIX AS A MILIEU
FOR LEARNING

A long experiment of ApLUSIX was conducted in 2002-2003 at grade
10, with 33 students of a high school in Annemasse in France. At the
beginning of the year, before any teaching of algebraic notions, we
prepared a pre-test, using APLUSIX, concerning different types of
algebraic problems which had already been presented in grade 9. The
analysis of the test pointed out some student difficulties concerning
algebraic notions studied in grade 8. As a consequence, we organized
lessons on factorisation and equation solving, and prepared activities
(2 — 3 hours on each topic) with ApLusix during the class time.

During the rest of the year, the teacher was invited to use APLUSIX
every time he thought it was relevant. We observed that he used
APLUSIX every time he worked on algebra, especially for inequalities
and systems of equations, in preference to the paper-and-pencil
environment.

We employed a constructivist approach to learning where students
learn by adapting to a milieu that provides contradictions, difficulties
and disturbing situations, and so on (Brousseau, 1997). In this
approach, knowledge construction is the result of the interaction of
the student with a particular environment. The environment should
be organized by the teacher with adequate problems, adequate sorts
of actions available to students in the environment, and adequate
types of feedback provided by the environment. We viewed APLUSIX
as a milieu for learning in which the actions concerned mainly the
manipulation of algebraic expressions, and providing three categories
of feedback: feedback about the equivalence of expressions; feedback
on the state of the current step provided by indicators in the software;
and feedback provided by textual messages.
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9.1. Solving Equations in the French class “Seconde” (Grade 10)

From grades 8 to 10 in France, the curriculum contains equations
that can be classified into the following types, where x is the
unknown, a—d are numbers, and the coefficients of x are not
equal to 0:

To: ax+b=0, Tiiax+b=cx+d, Ty (ax+b) X (ex+d)=0.
T3 (ax+b) x (ex +d) = (ex +f) x (gx + h).
Ts,: After expansion, terms in x> disappear, factorisation does not
apply, expansion is necessary.
Ts,: After expansion, terms in x> disappear, but factorisation applies
too.
Ts.: After expansion, terms in x*> do not disappear, factorisation is
necessary.
T4 A = B, where A and B are expanded and reduced forms of
degree less than or equal to 2, one form at least being of degree
2. After reduction and collection of all the terms on the left,
one gets ax’ + bx +c =0 where a factorisation is possible
with a second degree identity.
Ts: x> = a, with a positive or null. Te: (ax + b)* = 0.
T5: Other types of equations that can be transformed and lead to a
previously described type.

Types Ty, T1, Ty, T3, and Ty, are well studied in the curriculum
before grade 10. Types Ts., T4 and Ts are studied at grade 10. Given
this curriculum, we chose to conduct an experiment that focused on
the need for factorisation in the equation-solving process.

The methodology used in this experiment was the following.
Taking into account our analysis of the problems of types T;, T, and
T; in the pre-test, we prepared a teaching sequence organized in three
phases. During these phases, the students worked individually and
exclusively with APLUSIX.

Phase 1: Acquisition of knowledge :

Verification of calculations by ApLusix was on demand and the
indicators were shown to the student. As the goal of the experiment
was to show the use of factorisation in the solution of problems of
type Ts., we had three steps in this phase:

Step I: (1 hour): Solution of linear equations and second degree
equations without factorisation (problems of types T, T, T3z, and

T3p).
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Step 2: (1 hour): Solution of second degree equations with facto-
risation (problems of type Ts.). After steps 1 and 2, the teacher
presented a synthesis of the procedures for solving equations.

Step 3: (1 hour): Training with equations of type Ty, T, and Tj.
For problems of type T3, the students had to decide which procedure
should be used.

Phase 2: Post-test:

A post-test was organized in order to measure the student’s pro-
gress in comparison with the pre-test on equations of type Ty, T» and
Ts.. During this phase, the verification of calculations was disabled
and the indicators were hidden.

Phase 3: Individualized help:

The results obtained from the post-test showed a group of five
students in great difficulties. So we set up individualized help for
those who were volunteered (four out of five). This work was done
outside of the class; the students worked at home, or in a self-service
computer room. During this phase, verification of calculations was
available and the indicators were shown.

9.2. Results

Table II shows the evolution of the scores of the students for the
problems of types T;, T, and Ti.. The amount of progress de-
pends on the type of the problem, and also, for each type of
problem, on subcategories of problems. For example, for type Ty,
the success for exercises with integer coefficients was 100% in the
post-test whereas it was only 30% for exercises with non-integer
coefficients.

As students only worked with apLusix during this period, we make
the hypothesis that the evolution of the results was due to the milicu
provided by ApLusIx and to the choice of the situations.

TABLE II
Evolution of the scores between the pre-test and the post-test (percentages of well-solved
exercises)
Type of problem Pre-test% Post-test%
T 46 74
T, 3 63
Tsc 27 71

Total 18 68
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9.3. Different Behaviors of Students with APLUSIX

During phase 1, verification of the calculations was available. The
students had to decide to ask for the display of equivalence, and to
use the resulting information. This introduces APLUSIX as an
environment for doing experiments. While performing actions and
observing feedback, students developed their abilities, their control
over the software, their strategies, and they were able to correct
their errors. An example of such behaviour is shown in Figure 4
(Section 3).

During phase 2, the students tried to expand equations of type
Ts.. They reached an equation of the form ax? + bx + ¢ = 0 that they
were not able to solve. At this time, the teacher made an intervention
to explain the factorisation strategy. Then the students applied this
strategy to equations having apparent factors. After a while, some
students again used the expand strategy for second degree equations.
Two hypotheses can explain this behaviour: (1) the factorisation
method was not yet well established; (2), the common factor was not
apparent enough, e.g. (2x —4)(x+1) — (x —2)(x+3) =0. After
they got the ax?+ bx + ¢ =0 form, most of these students back-
tracked to a previous step and used the factorisation method.

The systems of linear equations confronted the students with the
issue of equivalent systems. The teacher recalled the two methods
(linear combination and substitution) and the students solved a few
systems of equations using paper and pencil, working on one
equation, then on the other, but not working through equivalent
systems. Then, the students had a session on systems of equations
with APLUSIX set to offer continuous feedback about equivalence. In
the beginning, most of the students did not work with equivalence.
But the sanction of the milieu was immediate, refusing to proceed to
a new step from a non-equivalent step. The students thought first
that it was a bug in the system, and after an explanation given by
the teacher, they began to worked by using equivalence. Later,
when they worked with paper and pencil environment, a majority of
students solved the systems of equations by equivalence.

Globally, the teacher observed that the students changed their
answers more easily using ApLusiX than in the paper and pencil
environment, and did not hesitate to test new strategies.
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9.4. The Teacher’s Point of View About the use of APLUSIX

Regularly during the year we discussed the use of ApLUsIX with the
teacher. We present below the main points evoked during these
discussions:

— The use of the system on the school computer network was
appreciated because it permits individual and collective use. The
possibility to set the options of the system according to the cur-
rent learning goals was appreciated too.

— The initial learning of the system did not present any difficulty
and was very quick.

— Students in difficulty showed motivation to solve exercises, on
their own, outside the lesson. They chose exercises in their text
book and solved them with ApLusix. This may be explained by the
fact that the students without computer software do not usually
have enough self-control to validate their answer and that the
system provides such validation.

— The students needed less help from the teacher when they were
working with ApLUsIX (this point was emphasised by the teacher).
They gained autonomy in the solving of problems. This confirms
the aspect of ApLusix as an environment for exploring and
experimenting.

— The teacher observed better results in comparison to those of
previous years, and students seemed to become more rigorous
about algebra syntax in the paper and pencil environment.

10. AN AUTOMATIC TEST IN A GRADE 10 CLASS

In November and December 2003, a teacher prepared a test for her
grade 10 class in the high school of Seyssinet in France, devoted to
equations and inequalities. The general organisation is given in
Table III.

The main goal was to evaluate the progress of the students after
the 50 min training session (phase 3) with ApLUSIX and just a little
help from the teacher. 28 students participated in the 5 phases. The
training phase consisted of using the system with verification of cal-
culations available on demand by the student. For evaluating the
students’ progress, a pre-test and a post-test were prepared with the
computer in phases 2 and 4, without verification of calculations.
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TABLE III

Organisation of the test in the high school of Seyssinet

Phase Date Duration Activity Verification of
calculations

1 November 14 20 min Discovery Continuous

2 November 14 20 min Pre-test Off

3 December 5 50 min Training On demand

4 December 19 30 min Post-test Off

5 December 19 20 min Post-training Continuous

Phase 1 was devoted to “‘discovery” learning of the software with
continuous verification of calculations. At the end, phase 5 was de-
voted to a free use of the software, again with continuous verification
of calculations. All the actions of the students were recorded in
interaction files.

The interaction files were analysed by ANAJs, a computer program
developed in our team which calculates summary statistics from the
students’ interaction files. Table IV shows the results of the pre-test
and Table V the result of the post-test.

In the post-test (phase 4), the students engaged in many more
exercises (a total of 282 exercises in 30 min against a total of 132
exercises in 20 min in phase 2) and succeeded in solving many more
exercises (a total of 96 exercises compared with a total of 56 exer-
cises). When we compare the results for similar exercises, we also see
significant progress — see Table VI.

However, the ratio of solved to attempted exercises decreased
from 42% to 34%, and the percentage of correct steps decreased from
72% to 66%. The explanations we propose for this phenomenon are:
(1) some difficulties remain (e.g., with fractions); (2) phase 4 contains
more difficult exercises, so new difficulties may have introduced new
errors (e.g. complex expansion).

The exercises of the training phase (phase 3) that were attempted
by the students are given in Table VII. Notice that the students in the
training phase solved during 50 min many fewer exercises than in the
post-test (30 min). This partly comes from the use of the system
feedback during the training phase, which indicated the correctness of
the calculation steps and led the students to redo incorrect calcula-
tions.
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TABLE VI

Comparison between the two tests for isomorphic exercises

Exercise, phase 2 Similar exercise, phase 4 Score, phase 2(%) Score, phase 4(%)

3—2xr=3r—-6 2r+4 =7+ bx 37 64
%ﬁ-x:%—%m %—i—%]z%—%] 10 32
—4xr—-1>0 —4xr—1>2x 16 42
3r—8<2—2x Jr—8<2—2x 33 66

11. CONCLUSION AND FUTURE WORK

We have presented design principles for computer systems for helping
students learn algebra. The principles mix features associated with
microworlds and CAS, and we have described their implementation
in ApLUSIX. In this conclusion, we first discuss the domain of validity
as emphasised by Balacheff and Sutherland (1994), who defined four
dimensions in mathematics for the epistemological domain of validity
of a microworld.

The first dimension is the set of problems that the microworld
allows to be presented. Concerning the calculation of equivalence
between expressions, the set of expressions of the domain has been
indicated in Section 5.3. Concerning the types of problem, these are
reduce, expand and reduce, factor polynomials expressions on the one
hand, and solve equations, inequalities and systems of equations on

TABLE VII

The 14 exercises of the training phase (phase 3)

No. Exercise No. students attempting the exercise
1 T3z +5)=0 28
2 8r—4=3x+2+ 5z 26
3 (x+2)(z—3)=(r+2)(z—4) 25
4 (92 — 5)(—6x+2) =0 20
5 Fzr-Sz+3= 18
6 3r—1<2zx+4 14
7 8r—4>1lx -2 13
8 (z+1)(z—5)>(x—3)(z+T7) 11
9 3x+1/2<z+1 6
10 (z+1)(z—2)—(z+3)(x—4)>0 6
11 Tz —5Bz+2)+3=-2(zx+9) 6
12 (bx +2)(4x +3) = (2 + 5z)(7xz — 5) 5
13 1222 -T2 =0 2
14 5z —2)(4x+3)+ bz —2)(Tx —5)=0 2
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the other hand. Problem types not in this list can be used with
APLUSIX, but the system is not able to indicate whether the problem is
solved or not. (In this case, the student indicates terminated instead of
solved, and gets no feedback).

The second dimension is the nature of the tools and the objects,
which is provided by the formal structure of the microworld. The
objects of APLUSIX are algebraic expressions and algebraic reasoning
by equivalence. The nature of the tools is to allow construction and
solution of algebraic problems.

The third dimension is the nature of the phenomenology over the
formal structure. The phenomenology at the interface of APLUSIX is
building algebraic reasoning by equivalence with two sorts of actions:
building a new step freely with the editor, and applying a command
to a sub-expression. The representation of expressions has a high
level of fidelity, and the reasoning is effectively reified.

The fourth dimension is the sort of control the microworld
makes available to users and the feedback that it provides. For the
building expression activity, the student may execute any editing
action. The major difference compared with editors in other soft-
ware is that ill-formed expressions are highlighted, and moreover
editing actions that lead to incorrect expressions are completed in
order to get a well-formed expression, instead of just refusing the
action. This is a form of feedback: when the student disagrees with
the interpretation of the system, his/her can undo the action or
modify the result. Indicators provide feedback concerning the
expressions and the problem. For the reasoning activity, the student
may produce a new step at any time and receives an indication of
equivalence as the critical feedback.

The ApLusIx system has been use experimentally for two years
in schools, mainly for grades 9 to 11. Results are positive in terms
of usability as well as in pedagogical usefulness of the system.
These results confirm our didactical analysis which has shown the
adequacy of the system as a milieu for learning, particularly in
terms of the verification of equivalence which the system can
perform. ApLUSIX can also be viewed as a milieu for validation, in
the sense given by Brousseau (1997), because the student can know
if his/her answer is correct or not without the intervention of the
teacher. This can reduce the effect of the ‘“‘didactical contract”
where the student tries to guess the result expected by the teacher
when she is asked for validation. Finally, we consider APLUSIX to
be an environment for experimentation as the interaction between
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the subject and the milieu allows for exploration and the evolution
of strategies.

The apLusIX system is currently a prototype that can be down-
loaded from: http://aplusix.imag.fr for testing and classroom use. It
runs in French, English, Portuguese, Italian, Japanese, and can be
easily translated into other languages. It will become a commercial
product in 2004.

Our future research on the development of apLusix will have four
main points.

First, we will add an automatic solver, capable of solving problems
in different ways depending on the level of the learner. This solver will
have a behaviour close to that of a good student of the given level. It
will be used to show to the student what next steps can be executed or
how a problem can be solved. Such a solver is currently under
development for the middle school level.

Second, we will add a graphical module capable of displaying the
graphs of functions associated with certain algebraic expressions.

Third, we will study in depth the work of students with the system
by analysing the recorded interactions. This work is currently taking
place in a project funded by the French Ministry of Research and
involving several teams.

Fourth, we will add several “tutor modules” to the system. Each
tutor will be devoted to the monitoring of the student on a particular
point in order to teach the point or correct a misconception.

Besides these developments of the student software, we will de-
velop the software for teachers, providing tools for the administra-
tion of the students’ files on the server, and for calculating statistics
like those presented in Section 10.

We will also continue to experiment with APLUSIX, in particular
investigating its role as a tool integrated in the curriculum for classes
in a range of grades. And we will further test the use of the CAS-like
commands with grade 12 students.

NOTES

' The current ILE that we describe in this paper is called ApLUsIX like its predecessor. To

avoid confusion, we will name it “our first ILE” in this paper.
2 For the computer systems mentioned without references details are given in the Ref-
erences at the end.
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