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ABSTRACT. This paper examines the extent to which Logo-experienced children are able to 
mobilise their Logo-based knowledge to construct meaning for elementary algebraic concepts. 
It reports the results of an exploratory study which was part of a longitudinal investigation of 
the mathematical environment created through Logo programming. The study aimed at 
gauging the influence of children's Logo learning in facilitating their conceptualisation of 
algebraic variable, and their ability to formalise in a non-computational context. 

The evidence which has accumulated from a number of recent longitudinal 
studies has suggested that children learning to program a computer with 
the Logo language, have participated in an environment which is rich in 
mathematical activity (Papert et al., 1979; Noss, 1983, 1984; Hoyles et al., 
1985). Such evidence is implicitly acknowledged by a recent report of the 
UK Schools Inspectorate (DES, 1985), which advises that if microcom- 
puters are to be granted a role as "a powerful means of doing mathematics", 
children will need to program the machines, and that "if programming is 
not taught elsewhere, it should be included in mathematics lessons" (p. 35). 
In this paper, my starting point is that the symbolic representation of 
mathematical concepts in the form of computer programs, engages the 
learner in the doing of mathematics. The question is, what else may she be 
learning? 

Papert (1972) has suggested that by learning to program in Logo, 
children may develop a 'Mathematical Way of Thinking' which can serve as 
a foundation for learning traditional mathematical content such as algebra 
and geometry. More daringly, and in contrast to traditional questions of 
transferability of taught skills, he has enquired whether it is possible to use 
algebra itself (embodied in a computer programming language) as a vehicle 
for teaching transferable concepts and skills. His conjecture is that pro- 

g r a m m i n g  in Logo offers the student an environment for mathematising, 
which may serve as an introduction tQ more formal mathematical 
structures: 

When mathematizing familiar processes is a fluent, natural and enjoyable activity, then is the 
time to talk about mathematizing mathematical structures, as in a good pure course on 
modern algebra. (Papert, 1972, p. 260). 

In learning Logo, the student is not simply solving problems; she is solving 
problems in a mathematical domain. The objects and processes available to 
her for the construction of programs are themselves mathematical (itera- 
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tion, recursion, variable, state, coordinate system etc.). The question is 
whether, in learning to program in Logo, the child may develop a bridge 
between the pseudo-concrete mathematical world of a computer screen, and 
the abstract world of mathematics. This paper will be concerned with only 
one aspect of mathematical activity, namely elementary algebra. It will 
report the results of an exploratory study aimed at investigating the extent 
to which learning Logo provided a small group of 10-year old children with 
a 'conceptual framework' (Feurzeig, Papert et al., 1969) for the learning of 
algebra, and in particular, a basis for the understanding of the concept of 
variable. 

RELATED RESEARCH 

If algebraic abstraction, in the sense of symbolic representations of rela- 
tionships, is central to mathematics, then the twin ideas of function and 
variable are central to algebra (Freudenthal, 1982). Yet it is precisely these 
ideas which children find such a major stumbling block in their learning 
(Tonnessen, 1980; Kuchemann, 1981; Wagner and Rachlin, 1981; Jensen 
and Wagner, 1982; Booth, 1984). These difficulties arise despite the role that 
natural language variables play in human cognitive processing (Davis et al., 
1978), although there are, as Wagner (1979) points out, important differ- 
ences between natural language and mathematical usages. 

The idea of function and variable are central to computing as they are to 
mathematics. Consider the Logo instruction FORWARD 50. The function 
FORWARD takes one argument (or 'input' in Logo jargon), which in this 
case is a number. Constructing a procedure which includes the command 
FORWARD :LENGTH on the other hand, utilises the possibility of 
turning the input into a variable. FORWARD :LENGTH will not be 
executed until the variable LENGTH has been given a value, as for example 
in the instruction: 

MAKE "LENGTH 40. 

Note that there is a clear distinction, not present in some other commonly 
used programming languages, between the name (or label) of the variable 
"LENGTH, and the value assigned to "LENGTH, :LENGTH. 

Logo allows the composition of functions in a way which models 
mathematical usage quite closely. For example, the instruction FORWARD 
HALF HALF :LENGTH will send the turtle forward 10 units, provided 
that HALF has been defined appropriately e.g.: 
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TO HALF :AMOUNT 
O U T P U T  :AMOUNT / 2 
END 

Logo thus provides a model of the ideas of function and variable which is 
reasonably consistent with mathematical usage. However, there is no a 
priori reason why such structural features of the language should be enough 
to develop relevant conceptual frameworks. DiSessa (1982) has suggested 
that while, for example, FORWARD is structurally a function in the 
mathematical sense, it seems likely that young children are much more 
likely to interpret it as essentially an abbreviation for the English sentence 
"Go  forward 100 steps". Samurcay (1985) points out that the algebraic and 
computational concepts of variable differ in subtle but important  respects. 
Leron (1983), and Hillel and Samurcay (1985) have indicated that the 
notion of variable within a Logo context is certainly far from straightfor- 
ward for many children. 

The construction of computer programs raises a number of more general 
issues related to algebraic abstraction. Consider for example, the lack of 
closure (Collis, 1975) inherent in the Logo expression 

F ORWARD 5 + 10 

or even 

A related 
occurs in, 

F ORWARD :LENGTH + 5 

issue is the interpretation of more than one variable such as 
for example, the procedure: 

TO POLYSPI  :LENGTH :ANGLE :DELTA 
FORWARD :LENGTH 
R I G H T  :ANGLE 
POLYSPI  ( :LENGTH + :DELTA) :ANGLE :DELTA 
END 

Lawler (1980) has shown that programs such as this can provide, even for 
young children, a powerful environment in which to explore the interaction 
between several variables which, in developmental terms, is perhaps surpris- 
ing (Lunzer, 1973; Collis, 1974; Halford, 1978; Karplus et al., 1982). Such 
findings (see also Lawler, 1985, for a stronger developmental claim), seem to 
depend on the provision of a context in which the construction of children's 
own formalism becomes a necessary (and natural) component of the 
environment itself (Papert, 1975), rather than a mere agreement to play the 
game of mathematical rigour according to the whim of the teacher. 
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This issue relates the need for formal syntactic precision in a pro- 
gramming context, to the idea of algebra as a formal/symbolic system of 
generalised number. Booth (1984) reports that children had difficulty in 
formalising mathematical methods, even in the case of arithmetic. The 
relationship between formal and intuitive methods has been investigated by 
other workers in relation to algebraic notions (Petitto, 1979; Kieran, 1981; 
Clement, 1982; Rachlin, 1982). 

Alongside this formal/logical component of mathematical rigour, pro- 
gramming involves a symbolic component. Adda (1982) has vividly illus- 
trated how the naming of concepts (in the form of Logo procedures), can 
provide a way to overcome ambiguities of mathematical symbolism. She 
points out that the concept of variable is rich in potential confusion, with, 
for example, a letter standing for a parameter, a variable, or a specific 
unknown. Much the same point is made by Feurzeig and Papert  who refer 
to the 'many roles of the "x" in algebra' (Feurzeig and Papert, 1969, p. 7). 
Even children who can grasp the notion of letters as numbers, often have 
difficulty in viewing a letter as standing for a range of numbers (Booth, 
1984). A related problem is the tendency noted by Kuchemann (1981) to 
view a letter as representing an object rather than a number. 

Such confusion is not of course restricted to the interpretation of the 
variable itself. For  example, Kieran (1980) has illustrated the miscon- 
ceptions which can arise over the equals sign, a misconception which seems 
to originate, at least in part, from the limitations of teaching strategy 
(Herscovics and Kieran, 1980). With respect to teaching strategies involving 
programming, it seems reasonable to avoid programming languages which 
employ symbolic representations which only add to the confusion such as 
BASIC's 'LET X = X  + 1'. More generally, it appears likely that the embodi- 
ment of mathematical relationships in the form of computer programs 
encourages a more dynamic view of the processes involved, and thus 
contributes to a decrease in some of the more common misconceptions 
(Soloway et al., 1982; Ehrlich et al., 1982). 

The question of children's conception of algebra has been studied exten- 
sively by Booth (1984). She has suggested that the construction of for- 
malised procedures constitutes a significant part of mathematical activity, 
and proposes that further investigation on this issue is merited. Booth's 
work did not involve the use of computers; the rationale for the for- 
malisation was provided by a notional machine, complete with input pad, 
start button, processor, store locations and output pad. She claims that the 
advantages of such an approach are based on the need for explicit and 
precise representation of procedures, the scope for the provision of inde- 
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terminate answers, and the provision of a rationale for the use of letters as a 
means of instructing the machine. 

The present study, while sharing much of Booth's rationale, differs in one 
major respect. The children in the study were actively engaged in the 
construction of computer programs. It thus becomes meaningful to inves- 
tigate the possible implications for children's algebraic formalisation, of 
their participation in the processes of constructing formalised algorithmic 
(procedural) descriptions. 

BACKGROUND TO THE STUDY 

The study reported in this paper (referred to as the 'algebra study') was 
undertaken as part of a longitudinal investigation into the creation of a 
mathematical environment through Logo programming. The longitudinal 
study was concerned with identifying the mathematical/programming acti- 
vities undertaken by children as they learned Logo, and in illuminating the 
relationship between computational and mathematical concepts and 
processes. 

During the first year of the eighteen-month study, 118 children partici- 
pated, aged between 8 and 11. They were distributed among five class- 
rooms, one in each of five schools (one grade 3, one grade 4, and three 
grade 5). Each class spanned the full ability range within the school, and the 
schools were chosen to obtain a spread with respect to socio-economic class 
of the students and geographic location. During the last six months, the 
study focussed on a single class of children aged between 10 and 11; detailed 
case-study data was obtained and at the end of this period, the algebra 
study reported below was undertaken. 

The Logo work was integrated into the curricular activities of each 
classroom, and children programmed in pairs throughout the school day. 
The teaching approach was loosely structured to allow children ample 
opportunity to pose and solve their own problems. Within this framework 
the teaching strategy employed was viewed as an issue for research, and for 
elaboration by the teachers and the researcher, rather than as an a priori 

component of the study. A full report of the study is contained in Noss 
(1985). 

AIMS OF THE ALGEBRA STUDY 

The general aim of the study was to examine the kinds of thinking which 
children who had learned Logo for 18 months (approximately 50 hours), 
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could 'carry over'  to an algebraic context. It was designed to investigate the 
extent to which the children could: 

(a) construct meaningful symbolisations for the concept of variable 
(b) construct formalised (algebraic) rules. 

The study consisted of interviews with children as they solved a series of 
pencil-and-paper rule-formulation problems. It  was not intended to com- 
pare the ability of 'Logo children' to conceptualise the notion of variable or 
to formalise, with that of 'non-Logo'  children. The investigation was 
essentially exploratory in nature; it was concerned with illuminating areas 
of explicit linkage between Logo programming and algebraic concepts, and 
with identifying issues for further research. 

The eight children who participated in the study were aged between 10 
and 11 years, and none had studied any "formal' algebra in their school 
mathematics. Each of the children had been the subject of case-studies 
referred to above, so that it was possible to accurately assess the kinds of 
Logo activities with which they were familiar. 

The two issues of symbolisation of variable and formalisation, provided 
two specific questions on which the study was based as follows: 

Question 1: How may children use the Logo ideas of (a) naming and (b) 
inputs to facilitate the conceptualisation and symbolisation of the concept of 
algebraic variable? 

Question 2: In what ways are children able to use their Logo-based 
experience to assist the process of formalisation in a mathematical  context? 

METHODOLOGY FOR THE ADMINISTRATION OF THE RULE 
FORMULATION ITEMS 

The rationale for the selection of items was based on the need for them to 
satisfy the following criteria: 

1. They were appropriate  for children who had not been introduced to 
algebraic notation. 

2. They allowed scope for children to construct their own formalisa- 
tion in the process of solution. 

3. They allowed scope for children to construct their own notation for 
unknowns in the process of solution. 

Four  items from the Strategies and Errors in School Mathematics project 
(SESM, Algebra; Booth, 1984) were modified for the interview items. These 
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dealt with the area classified by Booth as 'formalisation of method'. 
Comparison of the items given below (see Figure 1) with those of the SESM 
research will indicate that the focus of the items has been shifted to one of 
rule-formulation, rather than that of interpreting letters as unknowns, or 
recalling notational conventions. The key element in the 'solution' of each 
problem thus became the construction of a relevant formalism, rather than 
the interpretation of existing symbols. 

No attempt was made during the children's programming activities by 
either the teachers or the researcher, to link the Logo work with algebraic 
conventions. Given that none of the children had been introduced to 
formalised algebraic notation (other than the syntactic requirements of 
Logo itself), the possibility of their utilising such notation spontaneously 
(i.e. without intervention by the researcher) could be effectively ruled out. It 
was therefore determined to adopt an approach in which the interviewer 
provided a series of prompts to assist in the solution of the rule- 
formulation problems. 

The interview items were introduced by giving each child an 'initial 
problem card' to act as a stimulus for the rule-formulation problems (see 
Figure 1). 

It will be seen that the initial problem card for the bridges item (Item 1) 
differs from that of the remaining items, in that it poses only a concrete 
problem rather than an abstract one (note that this item is derived from 
Instone (1982); a related item was employed by Booth, 1984). In the case of 
the bridges item, the problem of formulating a general rule for the number 
of green blocks when the number of red blocks was unknown, was posed 
verbally by the researcher. 

All but one of the children were given Items 1, 2, and 3. Item 2a was given 
only to children who had managed Item 2 successfully, and were judged by 
the researcher to be capable of attempting it coherently. The interviews 
lasted between 25 and 35 minutes. 

The three main items were presented in order of increasing abstraction, 
with Item 1 presented first in all cases. Each child was given red and green 
blocks with which to build the bridges. For  Item 2, only the diagram on the 
card was presented. Item 3 consisted only of the written problem. 

This progression from the concrete to the abstract was also mirrored 
within each of the Items 1, 2, and 3, by the presentation of 'incomplete 
iconic representations' (IIR's) of the problem when appropriate (see Figure 
2). These were introduced as necessary, in order to motivate abstraction by 
presenting the problem in a form in which lengths or numbers of objects 
were indeterminate. 
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Put so redti,es L I I I I  .owmanyredti,es  in a line. 

Make a bridge ~ ~ �9 ; : :  :::: :::::::::::::::::: 
w i th  green tiles. !: ~; !;;:i 

How many green tiles. 7 

Fig. 1. Initial p rob lem card: I tem 1 - 'Bridges'. 

This is a square. 

What could you write for 
the distance all round it? 

Fig. 1. (ctd). Initial p rob lem card: I tem 2 - 'Square' .  

Somebody has spilled ink on this 
shape 

All its sides are the same length. 

What could yo u write for the 
distance all round it? 

Fig. 1. (ctd). Initial p rob lem card: I tem 2a - ' Ink Blot'. 

Peter has some marbles 
Jane has some marbles. 

What  could you wri te for the number of marbles 
Peter and Jane have altogether? 

Fig. 1. (ctd). Initial problem card: I tem 3 - 'Marbles ' .  
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This bridge is too long 
to fit on the paper 

i ii!i i!i' i!l !i !ii ili Ii  ii!iii ii i!iii!!i i!iiiii!iiii 

Fig. 2. ITR: Item 1 - 'Br idges ' .  

This square is 
too big to fit 
on the paper 

Fig. 2. (ctd). IIR: Item 2 - ' S q u a r e ' .  

Peter has too many marbles t o  �9 �9 �9 
fit on the paper. �9 0_ �9 0 ,  

lip 

Jane has too many marbles �9 �9 
to fit on the paper. � 9  �9 �9 � 9  

Fig. 2. (ctd). IIR: Item 3 - ' M a r b l e s ' .  

Prior to the interviews, draft interview protocols were piloted with three 
children, in order to ascertain an appropriate  order of presentation of the 
items, and the children's comprehension of the language employed. As a 
result, it was determined to situate each interview in the context of a 'story', 
in order to justify the need for conciseness in the rule-formulations. 
Students were told that the researcher worked with a group of 8-year old 
children who had learned Logo. The problem was to formalise rules for the 
individual items in such a way that these younger children could under- 
stand it, particularly as they 'couldn't  read very well'. The rationale for the 
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story was to encourage students to formalise their rules, and crucially, to 
deter them from deliberately choosing verbose descriptions of the rules. The 
story was effective in encouraging conciseness in all but one child. The 
exception was Anthony, who, after formulating a rather verbose rule, 
commented, in response to a prompt  for formalisation: 

A: " U m m . . .  yeah. Well, you'd need it in quite a bit of detail so they could 
understand it". 

Students were helped to establish rules by a sequence of questions designed 
to encourage generalisation. This approach is exemplified by the following 
sequence for the bridges item: 

(a) Give blocks (red and green). (Note that the term 'blocks' and 'tiles' were 
used interchangeably by the researcher and the children). 

(b) Help to construct the bridge. 
(c) How many green blocks? 
(d) How many green blocks, if there were 6, 8, 10 reds? 
(e) How many if there were 27 red blocks? 
(f) Can you make a rule if you don' t  know how many red blocks there are? 

By this stage, all the children were able to propose a natural  language 
rule e.g. 'Add 2 tiles on both ends of  the reds and greens'. The remainder of 
each problem interview was concerned with probing the Child's ability to 
construct a formalised rule and to employ a meaningful notation. 
Researcher interventions were made according to the scheme given in 

Table I. 

TABLE I 

1. Suggest unspecified notation (N1) 
2. Suggest specified notation (N2) 
3. Suggest formalisation of rule (F) 
4. Suggest Logo connection (L) 
5. Offer incomplete iconic representation (IIR) 

Note: the codes were used in the analysis of the 
interview transcripts and will be employed in the 
subsequent report. 

Interview Prompts 

Points 1 and 2 of the schedule were used to suggcst that somc notation may 
be helpful. For  example, 'Is there anything you could give a name to in this 
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picture?', or "What  could you call the number of red blocks?' would be 
examples of N1 and N2 interventions respectively. 

Point 3 involved reminding the student of a possible Logo connection, 
e.g. 'Did I mention that the first years have learned Logo?' Other more 
overt references to Logo were made to some children at the end of the 
interviews, in order to probe their conceptions of points that had arisen in 
the course of the interview. 

By formalisation of rule (Point 4) is meant a suggestion that  conciseness 
was required e.g. 'The first years can't  read very well', or 'Could you write 
that  using less words?'. Point 5 refers to incomplete iconic representations 
which suggested the need for generality by emphasising the indeterminate 
nature of the unknowns. 

The scheme of interview prompts  was not adhered to in detail. Flexibility 
was employed in order to allow the researcher to follow up any points 

which arose in the course of the interview. The schedule thus provided a 
framework which was used to indicate the general direction that each 

interview should take. In addition, an at tempt was made to intervene on as 
' low' a level as possible in order to transform each problem from concrete 
to abstract (Krutetskii, 1976), and to allow students scope to make the 
abstraction his/herself if possible. For  example, a student would be offered 
an N1 prompt  before an N2 prompt.  Similarly, a suggestion of a Logo 
connection (L) would not be made until oth6~r attempts at formalisation had 
failed. It should be noted that the  interview prompts  in Table I were 
employed cyclically rather than linearly; that is, the researcher returned to 
previously used prompts  when necessary. For example, the introduction of 
an incomplete iconic representation might have necessitated suggesting a 
notat ion (N1 or N2), or a formalisation of the rule (F). 

The eight interviews were audio-taped and transcribed. Each transcript 
was reviewed several times, and a classification of student responses was 
made. At the same time, a record of researcher-prompts was encoded onto 
each transcript using the coding scheme in Table I above. 

F INDINGS 

The findings are summarised in Tables II and III.  Table II provides an 
overview of the notations employed; Table I l l  provides a summary of the 
rule formulations. Discussion of the findings takes place under two headings 
corresponding to the two research questions posed earlier; the concept of 
variable, and the process of formalisation. 
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TABLE II 
Overview of notations employed 

1 'Blocks' 2 'Square' 2a 'Ink blot' 3 'Marbles" 

Anthony A B C D E F G H I  J - 
1 2 3 4  5 6 7  8 910 

Julie RBLOCK, DIS SIDE, DN 
GBLOCK DN 

Stephen (i) REDS, GREENS 
(ii) :REDS, :GREENS P., S. L., A. J, P 
(iii) R., S. 

Daniella :two, :tiles :SIDE 
Mathew (i) REDS, GREENS (i) SIDE - WHOLE, LOTS 

(ii) reds, greens, (ii) :SIDE, :NUM 
:NUM 

Nicola R.B., G.B. Side, Side 1 Side, :Peter, Jane 
Side 2, Side 3 Missing 

Joanne red, greens, - marbles, 
number marbles2 

Bradley Greens, 
Bricks Five 

'- '  denotes no notation employed. 
A blank entry denotes item not administered. 

The Concept of  Variable 

There  were two ma in  aspects  which emerged  f rom the interviews on the 

ques t ion  of variable.  These  concerned  (i) the idea  of naming,  and  (ii) the  

chi ldren 's  concep t ion  of var iable  as a general ised number .  The  conven t ion  

adop t ed  below is tha t  chi ldren 's  wri t ten rule fo rmula t ions  are in bold  type. 

Naming: Of  the eight  chi ldren who par t i c ipa ted  in the interviews,  six were 

able to suggest  names  for the unknowns  in I t em 1 (blocks), and  to emp loy  

them in a rule which  re la ted  the unknowns  as variables.  The  two except ions  

to this were A n t h o n y  and  Bradley,  nei ther  of  w h o m  had  used the idea  of 

var iable  to any  extent  in the  context  of Logo.  Indeed when p r o m p t e d  by  the 

researcher  for a connec t ion  with Logo,  A n t h o n y  was able to say ' W e  make  

up  p rocedure  names ' ,  but  was unable  to make  use of this idea  of naming  in 

the contex t  of the naming  of unknown  values. His  response  suggests the 

poss ib i l i ty  tha t  any  concep tua l  l inkage in this  respect  on the par t  of the 

remain ing  chi ldren,  is l ikely to be based on the idea of naming  of inputs  to 

procedures ,  r a the r  than  on the idea  of naming  itself. 

The  readiness  wi th  which chi ldren were p repared  to name  unknowns  

var ied  between items. F o r  example ,  some chi ldren  found the naming  of the 
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T A B L E  I I I  
Overview of rule formulations 

1 'Blocks' 2 'Square' 2a "Ink Blot" 3 'Marbles' 

Anthony 

Julie 

Stephen 

Daniella 

Mathew 

Nicola 

Joanne 

8rad~ 

I added 4 blocks 
onto J so that I 
knew the amount 
of green blocks 

rblock +4  to 
gblock 

(i) IF :REDS = 10 
[MAKE 
:GREENS + 4] 

(ii) G . = R . + 4  
:two is :tiles + 4  

(i) If reds=:NUM 
+ 2 greens at 
other ends 

(ii) Add 4 greens 
more than reds 

R.B.+4=G.B.  

D I S x 4  - J + t o  P 

P.=S. x4  L. xA. P.M.+J.M. 

The square is Count both 
4 x side set of 

marbles and 
add them up 

(i) If :side =:num 
x :side 4 

(ii) x :side by 4 

Side x 4= the  
whole thing 

Side x massing 
=the  whole 
thing 

WHOLE + LOTS 

:Peter + :Jane 

(i) If red = Number The distance Add marbles 
+4  to get greens all round it and marbles2 

is 4 x one side 
(ii) Add 4 greens to 

red to get the 
total greens 

Count the red 
bricks and put 
the green bricks 
on top 

' - '  denotes no rule formulated. 
A blank entry denotes item not administered. 

u n k n o w n s  p r o b l e m a t i c  in  I t e m  3 (marb le s ) ,  e v e n  t h o u g h  t h e y  h a d  succeess -  

ful ly u s e d  n a m e s  fo r  ea r l i e r  i t ems .  D a n i e l l a  for  e x a m p l e ,  s u g g e s t e d  ' g u e s s i n g '  

t h e  n u m b e r  o f  m a r b l e s  t h a t  P e t e r  h a d ,  a n d  ' a s k i n g '  h i m  h o w  m a n y  t h e r e  

were .  S t e p h e n ' s  r e s p o n s e  ref lects  h i s  i n i t i a l  c o n f u s i o n :  

S: " I  t h i n k  i t ' s  l ike  w i t h  t h e  b l o c k s  . . .  yes. Y o u  c a n ' t  d o  t h e  s a m e  t h i n g  w i t h  

t h e  b l o c k s ,  y o u  c a n ' t  h a v e  . . .  y o u  k n o w  t h e  t o p  o n e ' s  four ,  o r  u r n . . .  I d o n ' t  

k n o w " .  

I t  is p o s s i b l e  t h a t  t h e  n a t u r e  o f  t h e  u n k n o w n  i t s e l f -  n u m b e r s  of  m a r b l e s  
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rather than the length of side or 'length' of bridge (although note that this 
latter quantity was expressed in discrete terms i.e. numbers of blocks) - may 
have accounted for these responses, and may be related to the relatively 
restricted contexts in which unknowns were encountered within the Logo 
work. The children's experience of Logo inputs was generally confined to 
continuous quantities (length, angle), although it is an open question 
whether the children interpreted them in this way during their Logo work. 

Similar difficulties were encountered with regard to Item 2a (Ink blot), 
which required the manipulation of more than one variable. This item was 
given to only four of the children, of whom only one (Stephen) was able to 
formulate anything like a generalised rule (he did not give a name to the 
total perimeter). Only two children suggested naming either the total 
number of sides (Stephen), or the number of missing sides (Nicola). Again, 
the naming of a discrete quantity (number of sides) caused some difficulty. 

A rather different interpretation of the children's difficulties in Items 2a, 
and 3 may be based on the unmeasurability of the unknowns, rather than to 
their discreteness. Evidence of this possibility is exemplified by Julie's 
response, in her solution to Item 2a, the 'Ink-Blot' below: 

Interviewer: "Could you call it something, the number of sides there are?" 
J: "Um . . .  no". 
I: "Why not?" 
J :"  'Cos you don't  know how many sides there are on it, 'cos it's covered by 
ink". 

It is interesting to assess the extent to which researcher prompts for a Logo 
connection were instrumental in generating meaningful notations for the 
unknowns. It should be noted that investigation of the issue was con- 
founded by the presence of the researcher, who can be assumed to have 
been identified in the minds of the children with their Logo work. 
Nevertheless, it was noteworthy that only one child (Daniella), adopted the 
Logo-style colon as a first attempt at a notation in response to a researcher 
prompt. Three others (Mathew, Stephen and Nicola), adopted the colon at 
some point in the interviews. The example of Nicola provides an illustration 
of an approach which was apparently not explicitly motivated by her Logo 
experience, but which she was able to link with that experience in the final 
item (marbles) as follows: 

N: (presented with marbles item) "You could use the input again" (note that 
she had not previously referred to inputs). 
I: "Alright, show me how". 
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N: (writes) 

:Peter + :Jane = all the marbles 

I: "Can you read it out?" 
N: "Peter plus Jane equals all the marbles. You use those two as the inputs, 
with as many marbles as you want to". 

I: "So what are the dots in front of Peter and Jane?" 
N: "They're to represent that its an input". 
I: "But this isn't a Logo program is it?" 
N: "I know, but if it was . . .  just to say that it's an input." 
I: "So what does the input actually mean there then?" 
N: "That  you can type in however size you want it or how many you want 
it. How ever many  they want. How many they want Peter to have, and how 
many they want Jane to have". 

The connection in the children's perceptions between their Logo experience 
and the rule formulations was not always as clear-cut as this. For  example, 
the following exchange between the researcher and Stephen, in his solution 
to I tem 2 ('Square'), suggests that he was in the process of making con- 
nections between his Logo experiences and the formalisation of a rule: 

I: "Can you write down a rule?" 
S: (writes) 

T H E  P E R I M E T E R  IS F O U R  T I M E S  S I D E  

I: "O.K., and what does 'side' mean in that sentence there?" 
S: "Well, side is, if you, in a repeat you say, repeat forward side which is an 
input, and right 90 close brackets. And it'll repeat forward side and right 
90. And you can make side whatever you like, by saying the name of the 
program and then the number".  

I: O.K. Now can you write it using less words?" 
S: " M m . . .  O.K." (writes) 

P . = S .  x 4  

Variable as generalised number. The interviews provided a number of 
instances of children constructing names for variables which stood for a 
range of numbers. Although the exploratory nature of the study does not 
permit such instances to be interpreted as necessarily linked with the Logo 
work, such findings do appear to run counter to the 'natural '  tendency 
referred to by Booth (1984) of children to interpret letters as specific 
numbers. One illustration was provided by Julie (Item 1), who employed the 
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singular terms RBLOCK and G B L O C K  to stand for the number of blocks, 
even though she pointed out that 'You don't know what they are'. She also 
proposed (unprompted) that she 'make a word for the distance' in Item 2 
(which she called DIS). Having proposed a 'rule' (DIS x 4), she illustrated 
the mental link which she had formed with her previous experience as 
follows: 

I: "Have you ever done anything like that before" (i.e. calling an unknown 
by a name). 
J: "On the other page" (i.e. in Item 1). 
I: "What about when you've been doing Logo?" 
J: "Yes, when we did GAME we did it like that". (GAME was the first 
major Logo project in which Julie had used inputs some two months 
earlier). 
I: "Can you remember what that was?" 
J: "It did the distance around the people". 

There were a number of examples of children utilising explicit computer- 
based metaphors to aid in the process of using a single variable to stand for 
a range of numbers. One illustration is provided by Nicola's remark above 
that her variables were based on being able to 'type in however size you 
want it'. A further illustration is provided by Mathew, replying to the 
interviewer's question to explain what his variable (:NUM) stood for: 

M: "Random." 
I: "Mm. But what is it? Just any number?" 
M: "Well a number that's chosen by the computer." 

Examples such as this suggest a possible way in which the Logo work may 
have helped the students to formalise; the metaphor of typing in a value at 
the keyboard can be viewed as a means of conceptualising a range of 
numbers while only necessitating the consideration of specific values (one at 
a time). In the context of inputs, Logo variables are assigned a single value 
at the time the procedure is executed, although the name of the input may, 
of course, stand for an infinitely large range of possible values. 

Such a conception appears less abstract than the normal mathematical 
usage of the term variable. In the equation y = x, the relationship between x 
and y is the crucial factor, not specific examples of the relationship. It is the 
focus on the relationship which confers the power to conventional algebraic 
notation. Yet it is precisely this focus that, as Kuchemann (1981) points out, 
children find so difficult. It is worth conjecturing that the experience of 
using Logo inputs may have provided some children with a way of 
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conceptualising this abstract idea by linking the assignment of specific 
values to the variables. Such an explanation must be viewed only as one 
possible interpretation; the conjecture is one which is open to further 
investigation. 

It was evident that the children who experienced greatest difficulty with a 
generalised conception of the unknown were those who had least experience 
of the idea of Logo inputs or variable (Anthony and Bradley). Anthony, for 
example, displayed a specific number '  misconception by assigning a 'code' 
whereby letters stood for individual numbers: 

I: "Can you make up a name to put as a label on the number of red blocks?' 

A: "Make  up a n a m e . . ,  can we put a name for how many blocks there are? 
I see what you m e a n . . . "  
I: "Mm."  
A: "Like shall we p u t . . ,  yes but its going to v a r y . . . "  (pause). "Hey, I 've got 
an idea . . .  Hang  on I ' ve  got"  
(writes) 

A B C D E F G H I J 

1 2 3 4 5 6 7 8 9 1 0  

A: " N o w . . .  we can have a certain number up t o . . .  we can have any 
number up t o . . .  we can go up to 26." 

Anthony's  conception adds weight to the suggestion that the idea of 
inputs itself (rather than the naming of procedures) was an important  facet 
of any linkage between the Logo work and the rule formulation items. 

On the question of the distinction between the name and value of a 
variable in a Logo context, the interviews did not permit any conclusions to 
be reached; the unknown as object misconception (Kuchemann, 1981) was 
not greatly in evidence. Further investigation remains to be undertaken on 
this issue, particularly in relation to recent work on reformulating the 
syntactic and semantic basis of the Logo language (Allen and Davis, 1984). 

The Formalisation Process 

Using Logo-based contructs. Consideration of the rules formulated (see 
Table III), indicates that a number of children adopted certain aspects of 
Logo syntax in the construction of formalised rules (e.g. IF  and MAKE). 
The case of Stephen illustrates a number of important  issues. Stephen began 
by proposing two informal formulations, based on adding two more blocks 
'at each end'. In response to a prompt  to name one or more unknowns 



352 RICHARD NOSS 

(prompt N1), he proposed naming the numbers of red and green blocks as 
'REDS' and 'GREENS'  respectively. This notation led to the following 
formulation: 

IF  : R E D S = I 0  [MAKE :GREENS 14] 

The colons in the above rule were inserted as an afterthought. This 
formulation was the first in which Stephen assigned a value (10) to the 
unknown. He has adopted a formalised (Logo) notation to relate the 
unknowns, employing the Logo word IF in the role of 'suppose' i.e. 
'suppose there were 10 reds'. In response to the researcher's query as to the 
role of the 10, Stephen replied that it was 'just a random number'. 

In his next formulation, Stephen generalised from his assigned-value 
formulation, and at the same time moved away from a Logo-based 
notation: 

MAKE :GREENS F O U R  M O R E  T H A N  REDS 

It was clear that this formulation was not intended to be a Logo statement, 
although the role of the colon in front of GREENS (but not REDS) was not 
clarified. In moving away from the formalised notation of his previous rule, 
Stephen was still employing the Logo idea of MAKE (assigning a value to a 
variable) as a means of relating the two unknowns in the above 'equation'. 

Stephen's final formulation, proposed in response to a prompt for 
formalisation (prompt F), was as follows: 

G . = R . + 4  

There are three interesting aspects to this final rule. Firstly, Stephen has 
replaced the Logo 'MAKE'  (essentially procedural/dynamic), with an equa- 
lity symbol, seemingly as an equivalence. Secondly, he has introduced the 
addition symbol in a role which is clearly an operator on the unknown 
number of red blocks and the number 4. Thirdly, he has avoided the error 
of adding the 4 to the wrong side of the equation, which makes it unlikely 
that he had simply 'translated' his previous rule for natural language to an 
algebraic equation. 

It is possible to discern, in the development of Stephen's three rules, a 
transition from an essentially descriptive, specific-number formulation, to a 
generalised, algebraic one, in which the adoption of aspects of Logo 
formalism may have provided a catalyst for the transition to a more 
generalised (algebraic) conception. While the data of the present study 
allows nothing more than the postulation of a relationship of this kind, 
examples such as Stephen's illustrate one possible basis of a conceptual 
linkage, and point the way to further avenues of research. 
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The use of  arithmetic symbols. Six of the eight children employed an 
addition symbol in the rule formulated for Item 1. All six employed a 
multiplication symbol for Item 2. The exceptions were, once again, Anthony 
and Bradley. Three children, Nicola, Daniella and Stephen were prepared to 
operate on the unknowns. For  example, Daniella formulated a rule as 

follows: 

:two is :tries + 4 

In contrast, others employed arithmetic symbols rather as a shorthand for a 
verb (e.g. R B L O C K + 4  to G B L O C K  - Julie, Item 1). In such cases, the 
arithmetic symbol was interpreted as a shorthand for the natural language 
equivalent, rather than as an operation. In the children's Logo work, 
relatively little use was made of the Logo arithmetic operators; the evidence 
of the interviews is inconclusive on possible conceptual linkage in this 
respect. It would be interesting to investigate the effect of a more deter- 
mined intervention strategy aimed at encouraging the use of arithmetic 
operators in children's Logo activities. 

The children's use of the equality symbol was equally inconclusive. Julie 
ignored the equivalence between her 'total' and the other variables alto- 
gether; Daniella employed the word 'is' to convey the equality of two sets. 
Nicola, on the other hand, used the equality symbol for each of the four 
items. The only consistent trend was in the use of the equals sign as an 
equivalence in the instances of the use of 'IF' (see the formulations by 
Stephen, Mathew and Joanne; Table III). For  example, consider Mathew's 
formulation for Item 1, 

If reds = : N U M  + 2 greens at other ends 

which was read as 'If reds equals say a certain number, add 2 tiles at either 
end'. 

It is perhaps noteworthy that this was almost the only context in which 
the equality symbol appeared in the children's Logo work (e.g. IF :S IDE=0  
[STOP]). There is thus a possibility that these children used the equal sign 
as an equivalence (as in Logo), although it would be incautious to suggest a 
generalised conceptual linkage between this aspect of their Logo work and 
their rule formulations. 

IMPLICATIONS FOR RESEARCH 

This study has indicated that the experience of Logo programming may 
provide children with a framework on which further learning may be based. 
It may be worth emphasising here what the study is not intended to 
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illustrate: namely that children who have learned Logo for some time will 
necessarily have learned something about algebra in general or about the 
concept of variable in particular. The interpretation of the data offered here 
(and it should be emphasised that it is one possible interpretation), is that 
children may - under the appropriate conditions - make use of the algebra 
they have used in a Logo environment, in order to construct algebraic 
meaning in a non-computational context. What then, apart from the 
experimental conditions of a research study, constitutes appropriate con- 
ditions? 

The question of linking disparate conceptions formed from different 
contexts has recently been illuminated by Lawler's (1985) notion of 'mic- 
roviews'. The issue of forming conceptual linkages can in Lawler's terms be 
reformulated in terms of aiding the process by which disparate microviews 
can be synthesised into more general conceptions. Such a process may take 
a long time. As Vergnaud (1982) points out, understanding what a 15-year 
old does may involve knowing the kinds of 'primitive conceptions' which 
the child experienced at the age of eight or nine, and the ways in which such 
conceptions have been transformed over time. One way of viewing a role for 
Logo may be as an aid in forming primitive conceptions of algebraic 
notions (perhaps at an early age), which may then be integrated as part of a 
system of algebraic understandings - in Vergnaud's terms a conceptual 
field. 

Viewed in this way, the task becomes one of designing a mathematics 
curriculum with overt links to the kinds of ideas which the Logo environ- 
ment has encouraged. For example, the idea of namin 9 of variables (that is, 
with meaningful names chosen by students) is almost unheard of in 
established introductory algebra curricular materials, presumably because 
of the difficulty of linking such an idea with children's experience. 
Substituting 'apples' for 'a', of course, only makes the problem worse 
(Kuchemann, 1981). Whether, in the future, we might substitute :apples is 
an open question. 

There is another, more challenging possibility. This would involve con- 
structing a syllabus which was based on Logo itself. That  is, to design a 
syllabus in which the key ideas relating to the concepts of algebra were 
introduced via programming, i.e. to create a system of microworlds (or 
perhaps just one, providing it is rich enough) based on the ideas of algebra. 
In other words, algebraic concepts could be introduced via their symbolic 
representation within Logo programs. 

It is apparent that such a curriculum would rely heavily on a pedagogical 
input; there seem no grounds for supposing that a purely technical con- 
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struction in the form of the relevant Logo programs would be sufficient. 
This paper illustrates that through working with Logo, children may 
develop primitive conceptions to which they may link their further under- 
standings. But it may also point towards a way to take a further step which 
would provide an environment for higher-order conceptions to be con- 
structed. It should be possible to construct Logo-based environments which 
will allow access to the richness of algebra - in much the same way that 
the turtle primitives of Logo allow access to a wide range of geometric ideas 
(Abelson and DiSessa, 1980). 

Microworlds of this kind would be based on the creation of an environ- 
ment which allowed exploration and problem-solving within a sufficiently 
rich conceptual field (a single concept seems too poor  for the construction 
of a microworld). At the same time, the challenge would be to find ways of 
constructing Logo environments which are sufficiently transparent and 
flexible to enable the learner to gain control over the embedded concepts. 
Preliminary work on the construction of such algebraic learning environ- 
ments has been undertaken by Leron and Zazkis in Israel, and by Hoyles 
and Noss in the UK. 

Almost certainly, such microworlds will involve non-elementary examples 
of Logo programming. At the very least programs will contain primitives 
which are not accidentally stumbled upon (e.g. OUTPUT).  It is likely that 
they will involve ideas (such as recursion), which current research is 
indicating are far from trivial for most children. How to introduce such 
ideas must be an important area of investigation in the future. 
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