Équations différentielles ordinaires, MAT3190

Vestislav Apostolov

UQAM, Session H-2024

Plan du cours

Consultez en tout temps http://www.cirget.uqam.ca/~apostolo/MAT3190.html

Un système des équations différentielles ordinaires (EDO)

Définition

Soit $f: \mathbb{R} \times (\mathbb{R}^n)^k \to \mathbb{R}^n$ une fonction continue de (1 + nk)-variables. Elle définie un système des ÉDO d'ordre k:

$$x^{(k)}(t) = f(t, x(t), x'(t), \dots, x^{(k-1)}(t)), \tag{1}$$

où $x = x(t) : I \to \mathbb{R}^n$ est une fonction k-fois continument dérivable, définie sur une intérvalle $I \subset \mathbb{R}$. Toute fonction x(t)qui vérifie (1) s'appèle une solution de l'ÉDO. Une condition initiale pour (1) est la contrainte

$$x(t_0) = x_0, x'(t_0) = x'_0, \dots, x^{(k-1)}(t_0) = x_0^{(k-1)}, t_0 \in \mathbb{R},$$
 (2)

où $(t_0, x_0, x'_0, \dots, x_0^{(k-1)})$ sont des réels donnés.

¹Nous notons par $x^{(\ell)}(t)$ la ℓ -ème dérivée de x(t) $\rightarrow \{\ell\}$ $\rightarrow \{\ell\}$ $\rightarrow \{\ell\}$ $\rightarrow \{\ell\}$ $\rightarrow \{\ell\}$

Motivation

Slogan: L'objet de ce cours est l'étude **qualitative** d'une équation différentielle ordinaire. Que peut-on dire de ses solutions lorsqu'on ne sait pas la résoudre explicitement (ce qui est la règle plutôt que l'exception)?

Example (Les EDO de prédation)

Les équations de prédation de Lotka–Volterra sont un système des EDO non-linéaires du premier ordre, couramment utilisées pour décrire la dynamique de systèmes biologiques dans lesquels un prédateur (b(t) = # brochets dans un étang) et sa proie (p(t) = # percahudes) interagissent. Elles ont été proposées indépendamment par Alfred James Lotka en 1951 et Vito Volterra en 1962.

Example (Les EDO de prédation)

Figure: b(t) = # de brochets

Figure: p(t) = # de perchaudes

Example (Les EDO de prédation)

$$\begin{cases} \dot{p}(t) = p(t) (\alpha - \beta b(t)), \\ \dot{b}(t) = b(t) (\delta p(t) - \gamma), \end{cases}$$

où:

- t est le temps $t \in [0, \infty)$;
- $\dot{b}(t) := \frac{d}{dt}b(t), \ \dot{p}(t) := \frac{d}{dt}p(t)$ sont les variations de populations de brochets/perchaudes ;
- α taux de reproduction intrinsèque de proies;
- β taux de mortalité des proies causée par les prédateurs ;
- δ taux de reproduction de prédateurs (en fonction de proies mangées) ;
- γ taux de mortalité intrinsèque des prédateurs.

Par la théorie qualitative des EDO nous allons démontrer :

Théorème

• si pour un temps $t = t_0$ on a

$$b(t_0) = b_0 > 0, \qquad p(t_0) = p_0 > 0,$$

alors il existe unique solution maximale (b(t), p(t)) qui est définie pour tout réel t et b(t) > 0, p(t) > 0;

la fonction

$$\Phi(x_1, x_2) := \beta x_2 + \delta x_1 - \alpha \log x_2 - \gamma \log x_1$$

est une intégrale première, c.-à. d. $\Phi(p(t), b(t)) = const.$

 les solutions sont périodiques, et leur trajectoire est fermée et bornée

Example (Les EDO de prédation)

La trajectoire de la solution de

$$\begin{cases} \dot{p}(t) = p(t) (\alpha - \beta b(t)), \\ \dot{b}(t) = b(t) (\delta p(t) - \gamma), \\ p(t_0) = p_0, \quad b(t_0) = b_0 \end{cases}$$

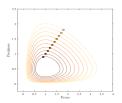


Figure: Trajectoires fermées = courbes de niveau de $\Phi(p, b) = \Phi(p_0, b_0)$.

Example (Modèle SIR)

Les équations de Kermick–McKendrick modélisent l'infection d'une population pendant une pandémie : soitent S(t) la fraction de la population (en %) susceptible d'être infectée ; I(t) la fraction de personnes infectées ; R(t) la fraction de personnes rétablies où immunisées. Alors

$$\begin{cases} \dot{S}(t) = -\beta S(t)I(t), \\ \dot{I}(t) = \beta S(t)I(t) - \alpha I(t), \\ \dot{R}(t) = \alpha I(t) \end{cases}$$

- $\frac{1}{\alpha} > 0$ = nombre de jours (en moyen) qu'une personne infectée reste malade.
- $\beta>0$ est la « taux d'incidence » $\sim \#$ contacts entre personnes saines et infectées et de la virulence de la maladie.

Example (Équation de Newton)

L'ÉDO

$$m\ddot{x}(t) = F(x(t))$$

décrit le movement d'un point matériel sur la droite, soumis sous l'action d'un champ de force F(x).

- $y(t) = \frac{d}{dt}x(t) = \dot{x}(t)$ est la vélocité;
- $a(t) = \frac{d^2}{dt^2}x(t) = \ddot{x}(t)$ est l'acceleration ;
- m > 0 est la masse, une constante réelle.

Par la théorie qualitative des EDO nous allons démontrer :

Théorème

• Si U(x) est une fonction primitive ² de -F(x) alors

$$E(x,y):=\frac{my^2}{2}+U(x)$$

est une intégrale première, c.à d. pour toute solution x(t) de l'équation de Newton et $y(t) := \dot{x}(t)$, E(x(t), y(t)) = const.

• Si U(x) > 0, alors il existe unique solution infiniment définie x(t) de l'équation de Newton qui vérifie la condition initiale

$$x(t_0) = x_0, \quad \dot{x}(t_0) = y_0.$$

• Si de plus E(x, y) est une fonction propre, alors les trajectoires (x(t), y(t)) sont des courbes périodiques fermées dans \mathbb{R}^2 .

Réduction à l'ordre 1

Rappel

Un sytème EDO d'ordre un est définie par une fonction continue $f: \mathbb{R} \times (\mathbb{R}^n) \to \mathbb{R}^n$, et s'écrit

$$\dot{x}(t) = f(t, x(t)), \tag{3}$$

ou
$$\dot{x}(t) := \frac{d}{dt}x(t)$$
.

Exemples

Les systèmes EDO de la prédation et le modèle SIR sont d'ordre 1; l'équation de Newton ne l'est pas.

Soit $x(t):I \to \mathbb{R}^n$ une solution k-fois continument dérivable du système EDO

$$x^{(k)}(t) = f(t, x(t), x'(t), \dots, x^{(k-1)}(t)), \tag{4}$$

qui vérifie la condition initiale

$$x(t_0) = x_0, x'(t_0) = x'_0, \dots, x^{(k-1)}(t_0) = x_0^{(k-1)}.$$
 (5)

Posons

Plan du cours

$$y(t) = (y_0(t), y_1(t), \dots, y_{k-1}(t)) : I \to (\mathbb{R}^n)^k$$

 $y_0(t) := x(t), y_1(t) := x'(t), \dots, y_{k-1}(t) := x^{(k-1)}(t)$

Réduction à l'ordre 1

Théorème 1

La fonction y(t) est une solution (continument dérivable) du système d'ordre 1

$$\begin{cases} \dot{y_0}(t) = y_1(t), \\ \vdots \\ \dot{y}_{k-2}(t) = y_{k-1}(t), \\ \dot{y}_{k-1}(t) = f(t, y_0(t), y_1(t), \dots, y_{k-1}(t)) \end{cases}$$
(6)

qui vérifie la condition initiale

$$y_0(t_0) = x_0, y_1(t_0) = x'_0, \dots, y_{k-1}(t_0) = x_0^{(k-1)}.$$
 (7)

Réciproquement, toute solution $y(t) = (y_0(t), \dots, y_{k-1}(t))$ de (6)-(7) détermine une solution $x(t) := y_0(t)$ de (4)-(5).

Example (L'ÉDO de Newton)

L'ÉDO de Newton

$$\ddot{x}(t) = F(x(t)), \qquad x(t_0) = x_0, \, \dot{x}(t_0) = y_0,$$

est équivalent au système de Hamilton-Jacobi

$$\begin{cases} \dot{x}(t) = y(t) = \frac{\partial E}{\partial y} (x(t), y(t)), \\ \dot{y}(t) = \ddot{x}(t) = F(x(t)) = -\frac{\partial E}{\partial x} (x(t), y(t)), \\ x(t_0) = x_0, \qquad y(t_0) = y_0, \end{cases}$$

où $E(x,y) = \frac{y^2}{2} + U(x)$ est l'énergie totale (cinétique + potentielle) du système mécanique.

Systèmes autonomes

Définition

Un sytème EDO est dit *autonome* si la fonction $f: \mathbb{R} \times (\mathbb{R}^n)^k \to \mathbb{R}^n$ ne dépende pas de la variable temps t, c.-à-d.

$$x^{(k)}(t) = f(x(t), x'(t), \dots, x^{(k-1)}(t)).$$
 (8)

Exemples

Les trois exemples de systèmes (prédation, SIR et Newton) sont autonomes.

Réduction à un système autonome

Théorème 2

Plan du cours

Le système non-autonome

$$\dot{x}(t) = f(t, x(t)), \qquad x(t_0) = x_0,$$

est équivalent au système autonome pour

$$y(t) = (y_0(t), y_1(t)) : I \to \mathbb{R} \times \mathbb{R}^n$$
:

$$\begin{cases} \dot{y_0}(t) = 1, \\ \dot{y_1}(t) = f(y_0(t), y_1(t)), \\ y_0(t_0) = t_0, \quad y_1(t_0) = x_0. \end{cases}$$

Remarque

Le théorème 2 n'est que mathématiquement significatif.

Champs de vecteurs et courbes intégrales

Définition (Champ de vecteurs dans \mathbb{R}^N)

Un champ de vecteurs dans \mathbb{R}^N est une application

$$V: \mathbb{R}^N \to \mathbb{R}^N$$
.

Example

V(x,y) = (-y,x) est un champs de vecteurs sur \mathbb{R}^2 , qui est infiniment différentiable.

Figure: Le champ de vecteurs V(x, y) = (-y, x)

Champs de vecteurs et courbes intégrales

Définition (Une courbe intégrale)

Soit $V(x): \mathbb{R}^N \to \mathbb{R}^N$ un champ de vecteurs, qui est une application continue. Une *courbe intégrale* x=x(t) de V(x) est une application $x(t): (\alpha,\beta) \to \mathbb{R}^N$ de régularité $C^1(\alpha,\beta)$ (c.-à-d. continument dérivable sur l'interval $(\alpha,\beta) \subset \mathbb{R}$), qui est une solution du système autonome des EDO:

$$\dot{x}(t) = V(x(t)), t \in (\alpha, \beta).$$

Champs de vecteurs et courbes intégrales

Example

Le courbes intégrales de V(x, y) = (-y, x) sont données par

$$x(t) = x_0 \cos(t) + y_0 \sin(t), \ y(t) = x_0 \sin(t) - y_0 \cos(t), \ t \in (-\infty, \infty).$$

Figure: Les courbes intégrales de V(x,y) = (-y,x)

Conclusion

Plan du cours

Les solutions d'un système EDO

$$y^{(k)}(t) = f(t, y(t), y'(t), \dots, y^{(k-1)}(t)),$$

qui vérifient la condition initiale

$$y(t_0) = y_0, y'(t_0) = x'_0, \dots, y^{(k-1)}(t_0) = y_0^{(k-1)}$$

sont en correspondance bi-équivoque avec les courbes intégrales

$$\dot{x}(t) = V(x(t)) \tag{9}$$

d'un champs de vecteurs V(x) : $\mathbb{R}^N \to \mathbb{R}^N$, qui vérifient la condition initiale de Cauchy:

$$x(t_0) = x_0. (10)$$

Exercices

Définition (Points d'équilibre)

Soit V(x) un champ de vecteurs (continu) sur \mathbb{R}^N . Un point d'équilibre x_0 pour V est un point t.q. $V(x_0) = 0$.

Exercice 1

(a) Demontrer que si $x_0 \in \mathbb{R}^N$ est un point d'équilibre pour V(x), alors la courbe stationnaire

$$x(t) = x_0, \qquad t \in (-\infty, \infty),$$

est une courbe intégrale de V(x) qui vérifie la condition de Cauchy $x(t_0) = x_0$.

(b) Trouvez les points d'équilibre pour chacun des systèmes de prédation et SIR.

Exercices

Exercice 2

Considérons un système EDO d'ordre 1

$$\dot{x}(t) = f(t, x(t)), \tag{11}$$

définie par une fonction $f(t,x): \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$ qui est k-fois continument dérivable sur l'ensemble de ses variables (t,x_1,\ldots,x_n) . Supposons que $x=x(t):I\to\mathbb{R}^n$ est une solution continument dérivable de (11).

Démontrer que x(t) est forcement (k+1)-fois continument dérivable.