Introduction la géométrie riemannienne, TD2

Répondre aux 3 questions suivantes en donnant les justifications nécessaires. A remettre le TD au plus tard le 30 mars 2022.

(1) Soit E un fibré vectoriel réel de rang k sur une variété lisse et connexe M, muni d'une connexion ∇ . Notons par $P^{\nabla}(M, E)$ le sousensemble de sections lisses $s \in C^{\infty}(M, E)$ qui sont ∇ -parallèles, i.e. qui vérifient

$$\nabla_X s = 0, \quad \forall X \in C^{\infty}(M, TM).$$

- (a) Démontrer que $P^{\nabla}(M,E)$ est un sous-espace vectoriel réel de $C^{\infty}(M,E).$
- (b) En utilisant le Théorème de transport prallèle, démontrer que $P^{\nabla}(M,E)$ est de dimension finie et que

$$\dim_{\mathbb{R}} \left(P^{\nabla}(M, E) \right) \le \operatorname{rang}(E).$$

(c) Démontrer que si $\dim_{\mathbb{R}} \left(P^{\nabla}(M, E) \right) = \operatorname{rang}(E)$ alors

$$E \cong M \times \mathbb{R}^k$$

et ∇ est isomorphe à la connexion plate $\mathring{\nabla}$ sur $M \times \mathbb{R}^k$.

- (2) Soit $f:(\hat{M},\hat{g})\to (M,g)$ un revêtment riemannien. Montrer que si (M,g) est complète, alors (\hat{M},\hat{g}) est aussi complète. En déduire que :
 - (a) chaque géodésique de (M,g) est la projection par f d'une géodésique de (\hat{M},\hat{g}) ;
 - (b) trouver les géodésiques du tore \mathbb{T}_a^2 où $a = \{(1,0), (0,1)\}$ est la base standard de \mathbb{R}^2 . Calculer le diamètre riemannien de \mathbb{T}_a^2 .
 - (c) montrer qu'une géodésique de $(\mathbb{RP}^n, \text{can})$ est minimale si et seulement si sa longueur est inférieure ou égale à $\pi/2$ et calculer le diamètre de \mathbb{RP}^n .
- (3) Une varété riemannienne (M,g) est dite homogène si le groupe d'isométrie riemanniennes $\operatorname{Isom}(M,g)$ agit de manière transitive sur M. Montrer que toute géodésique sur une variété riemannienne homogène est indifinément prolongéable. En déduire que les variétés homogènes sont complètes. Est-ce que l'espace hyperbolique $(\mathbb{H}^n, g_{\operatorname{can}})$ est une variété riemannienne complète ?