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Abstract: It is shown that the Hermitian-symmetric space CP1 × CP1 × CP1 and the flag manifold F1,2
endowed with any left invariant metric admit no compatible integrable almost complex structures (even
locally) different from the invariant ones. As an application it is proved that any stable harmonic immersion
from F1,2 equipped with an invariant metric into an irreducible Hermitian symmetric space of compact type is
equivariant. It is also shown that CP1×CP1×CP1 and F1,2 with its invariant Kähler–Einstein structures are
the only compact Kähler–Einstein spin 6-manifolds of non-negative, non-identically vanishing holomorphic
sectional curvature that admit another orthogonal complex structure of Kähler type. A necessary and sufficient
condition on a compact oriented 6-manifold to admit three mutually commuting almost complex structures
is given; it is used to characterize CP1 × CP1 × CP1 and F1,2 as Fano 3-folds admitting three mutually
commuting complex structures which satisfy certain compatibility conditions.
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1. Introduction

Let (M2n, g) be an oriented Riemannian manifold of dimension 2n. A complex structure
on M , viewed as an integrable almost-complex structure J , is positive and orthogonal whenever
J induces the same orientation on M and J is g-skew-symmetric.
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Given a Riemannian manifold (M2n, g) it is natural to ask [35] does there exist an orthogonal
complex structure on (M, g)? If so, we would like to describe the set of all orthogonal complex
structures. This question (which in fact concerns the conformal structure determined by g) can be
asked either locally or globally, and the corresponding answers can be rather different in nature.
While on an oriented (real) surface the complex structures and the Riemannian conformal classes
coincide, when n � 2 the local existence of orthogonal complex structures imposes constraints
on the (conformally invariant) Weyl curvature tensor of M , cf. [37]. Consider for example CPn ,
n � 3 with the Fubini–Study metric. It is well known that the unique globally defined positive
orthogonal complex structure is the canonical one while locally there are infinitely many positive
orthogonal complex structures since the Bochner tensor of the canonical Hermitian structure
of CPn vanishes, cf. [29].

If M is a (real, oriented) 4-dimensional manifold, then any positive orthogonal complex
structure J is determined (up to a 4-fold ambiguity) by the self-dual Weyl tensor W + at any
point where it is non-zero. More precisely, J is equal to a universal function of the eigenforms
and the eigenvalues of W +, operating on the bundle of self-dual 2-forms, cf. [34, 4] (the above
mentioned ambiguity comes from the lack of a canonical orientation for the eigenspaces of W +).
In particular, if W + is not identically zero, there are (even locally) at most 2 distinct compatible
positive complex structures [31]. (Here and henceforth, distinct means that there is a point
where the complex structures are not equal up to sign.) On the other hand the anti-self-dual 4-
manifolds admit locally infinitely many compatible complex structures [8]. Compact Riemann-
ian 4-manifolds admitting two distinct globally defined positive orthogonal complex structures
are called bihermitian surfaces. It follows from the results in [31, 6] that few of the complex sur-
faces could admit bihermitian structures, i.e., “generically” on a compact oriented Riemannian
4-manifold there is at most one globally defined positive orthogonal complex structure.

When the dimension of M is more than 4 the situation is more complicated (see [35] and
the included references). However, the question of global existence of orthogonal complex
structures has been successfully studied for some special classes of Riemannian manifolds
as Riemannian (inner) symmetric spaces of compact type [13, 12], compact quotients of ir-
reducible symmetric spaces of non-compact type [16], quaternionic manifolds (of dimension
4n, n � 2) [30, 2, 3]. Unfortunately, for a general Riemannian manifold little is known for the
set of orthogonal complex structures.

In this paper we are interested in 6-dimensional Riemannian manifolds, admitting three
commuting orthogonal complex structures. This condition comes naturally from the geometry
of the twistor space and insures the triviality of the twistor bundle (see Section 2). It is equivalent
to the splitting of the tangent bundle into three two-dimensional subbundles and leads to a certain
topological restriction on the manifold (Proposition 1).

The simplest example of such a manifold is the product �1 × �2 × �3 of three Riemann
surfaces �1, �2, �3. It can be in fact characterized by the existence of four mutually commuting
Kähler structures (Section 3.1) and we observe in Theorem 3 that if the Gauss curvatures ki ,
i = 1, 2, 3 of �i satisfy

ki + k j �= 0, i �= j

at some point, then these are the only orthogonal complex structures. Concerning the reducible
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Hermitian-symmetric space CP1 × CP1 × CP1, our local observation fits in with the results
of [13].

We also consider the flag manifold

F1,2 = U(3)/(U(1) × U(1) × U(1))

with an arbitrary U(3)-left-invariant Riemannian metric (Section 3.2). It has been already
observed by the authors that with respect to a certain 1-parameter family of U(3)-left-invariant
metrics on F1,2 the only orthogonal complex structure are the three commuting U(3)-left-
invariant complex structures, [5, Theorem 1]. This has been derived by considering F1,2 as the
twistor space over CP2 with its standard metric; hence there is a map π : F1,2 �→ CP2 and
1-parameter family of (U(3)-left-invariant) Riemannian metrics ht , t > 0 of F1,2, such that
for any t > 0, π is a Riemannian submersion from (F1,2, ht) to CP2. It thus can be seen that
any orthogonal complex structure on (F1,2, ht) is either the tautological complex structure, or
else it is the lift of one of the two (differing by sign) orthogonal complex structures on CP2.
Considering now F1,2 with its algebraic structure of a homogeneous space we extend the result
for an arbitrary left-invariant metric.

Theorem 1. Let F1,2 = U(3)/(U(1) × U(1) × U(1)) be the flag manifold, endowed with a
U(3)-left-invariant metric. Then the only orthogonal complex structures (even locally defined)
are the three U(3)-left-invariant complex structures on F1,2.

Recall that a map from a flag manifold into a Riemannian manifold is said to be equiharmonic
if it is harmonic with respect to any invariant metric of the flag manifold. As consequence of
Theorem 1 we get

Corollary 1. Let f : F1,2 −→ M be a stable harmonic map from the flag manifold F1,2

equipped with some invariant metric into an irreducible Hermitian-symmetric space of compact
type M, and suppose that there is a point where the differntial of f has maximal rank. Then f
is equiharmonic map which is ±-holomorphic with respect to some of the invariant complex
structures J1, J2, J3.

In Section 4 we characterize (up to a biholomorphism) CP1 ×CP1 ×CP1 and F1,2 as Fano
3-folds admitting spin structure and three mutually commuting complex structures, satisfying
certain natural compatible conditions (Proposition 2). Moreover, regarding to CP1×CP1×CP1

and F1,2 with its (left) invariant Kähler–Einstein structures (see Remark 2 bellow), we prove
the following result, which nicely links to Mok’s characterization [26] of compact Hermitian-
symmetric spaces as Kähler manifolds of non-negative bisectional curvature:

Theorem 2. Let (M, g, J ) be a compact Kähler–Einstein spin-manifold of real dimension 6
with non-negative non-identically vanishing holomorphic sectional curvature. If (M, g) admits
another orthogonal complex structure J ′ �= ±J which is of Kähler type, then (M, g, J ) is
biholomorphically isometric to either CP1 × CP1 × CP1 or F1,2 with its (left) invariant
Kähler–Einstein structure, and the complex structure J ′ is invariant too.
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2. Commuting orthogonal almost complex structures and twistor spaces of Riemannian
6-manifolds

2.1. Twistor space of a Riemannian manifold of even dimension

Let (M, g) be a 2n-dimensional oriented Riemannian manifold. We wish to study positive
orthogonal (almost) complex structures on (M, g), which we view as sections of the fibre
bundle π+ : Z+M = P ×O(2n) (SO(2n)/U(n)) �→ M , where P �→ M denote the canonical
principal O(2n)-bundle. The vertical distribution V =Ker(π+)∗ inherits a canonical complex
structure JV since the fibre Hn = SO(2n)/U(n) is a Hermitian-symmetric space. Moreover, the
Levi-Civita connection ∇ on M induces a splitting T Z+M = H ⊕ V of the tangent bundle of
Z+M into horizontal and vertical components, so that H ∼= (π+)−1T M acquires a tautological
complex structure JH given by JH

x, j = j for x ∈ M and j ∈ (π+)−1(x) ∼= Hn . Following [8],
we define an almost-complex structure J on Z+M by

J = JH + JV.

It is well known that in the case when M is 4-dimensional, the almost complex structure J is
integrable iff the positive Weyl tensor of (M, g) vanishes [8]; if dim M = 2n > 4, then the
integrability of J is equivalent to the vanishing of the Weyl tensor of (M, g) [29]. Moreover, in
[32], Salamon shows that integrability of a positive orthogonal almost complex structure J of
(M, g) is equivalent to the holomorphicity of J viewed as a map J : (M, J ) �→ (Z+M, J). In
fact one can say more. In [29], the Nijenhuis tensor N J is calculated and it is shown that N J

vanishes at j ∈ Z+M iff

R(T 1,0( j), T 1,0( j))T 1,0( j) ⊂ T 1,0( j), (1)

where T (1,0)( j) ⊂ Tπ( j)M ⊗ C is the (1, 0)-space of j and R is the curvature of g.
Denote by Z+

0 M the zero-set of N J. Since any positive orthogonal complex structure J
satisfies (1) we have that J lies entirely in Z+

0 M , but a section J of Z+
0 M is not necessarily

integrable.

2.2. Twistor space of a Riemannian 6-manifold

Now we restrict our attention to the twistor space Z(M, g) of a 6-dimensional Riemannian
manifold (M, g). Since the positive and the negative twistor spaces can be identified via the
map j �→ − j on the fibre, we will consider Z(M, g) as the quotient space of the principal
O(6)/U(3)-bundle of all orthogonal almost complex structures of (M, g) under this action.
The fiber H3 = SO(6)/U(3) is then isomorphic to CP3 and we will make use of the explicit
identification given in [1] (for more details see also [33, 38, 18, 5]). Let V be a complex 4-
dimensional vector space endowed with a Hermitian inner product h and a volume form 
 ∈
�4V . The Hodge operator ∗ is defined on �2V by

ξ ∧ ∗η = h(ξ, η)
.
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Thus the C-anti-linear endomorphism ∗ induces on the 6-dimensional complex vector space
�2V a real structure. The fixed points set of ∗ forms a real 6-dimensional vector space W
with a positive definite inner product g coming from h. For any [v] ∈ P(V ) we then have the
h-orthogonal splitting

�2V = Vv ⊕ V ⊥
v , (2)

where Vv denotes the vector space generated by the 2-vectors v ∧ u with h(u, v) = 0 and
V ⊥

v is the orthogonal component of Vv in �2V . Notice that V ⊥
v is spanned by the 2-vectors

u′ ∧ u′′ with h(u′, v) = h(u′′, v) = 0. The splitting (2) of �2V = W ⊗ C defines a positive
g-orthogonal complex structure on the vector space W with (1,0) and (0,1)-spaces equal to Vv

and V ⊥
v , respectively. This gives the identification of P(V ) ∼= CP3 with the space SO(6)/U(3)

[1, Lemma 4.1]. In terms of this correspondence we have that two distinct positive orthogonal
complex structures J ′ and J ′′ on (W, g) commute iff the corresponding [v′] and [v′′] ∈ P(V ) are
h-orthogonal, [5, Lemma 1]. Moreover, if we fix a unitary frame {v0, v1, v2, v3} of (V, h) with
v0 ∧v1 ∧v2 ∧v3 = 
, the corresponding orthogonal almost complex structures {J0, J1, J2, J3}
mutually commute, cf. [5, Corollary 1], and the complex vectors

Z1 = v0 ∧ v1, Z2 = v0 ∧ v2, Z3 = v0 ∧ v3, (3)

give a unitary frame of T 1,0
J0

; their complex-conjugated vectors are respectively

Z1 = v2 ∧ v3, Z2 = −v1 ∧ v3, Z3 = v1 ∧ v2,

and the corresponding (1, 0)-spaces of J1, J2, J3 are respectively spanned by the triples

{Z1, Z2, Z3}, {Z1, Z2, Z3}, {Z1, Z2, Z3}.
For an element [v] ∈ P(V ) let [α0, α1, α2, α3] be the homogeneous coordinates with respect
to {v0, v1, v2, v3}; the corresponding positive orthogonal complex structure J is determined by
its (1, 0)-space spanned by the vectors (see [5]):

Z J
0 = −α1 Z1 − α2 Z2 − α3 Z3, Z J

1 = α0 Z1 − α2 Z3 + α3 Z2,

Z J
2 = α0 Z2 + α1 Z3 − α3 Z1, Z J

3 = α0 Z3 − α1 Z2 + α2 Z1.
(4)

The only relation among them is �3
j=0α j Z J

j = 0.

We then decompose CP3 as

CP3 ∼= C
3 ∪ C

2 ∪ CP1,

where:
(a) The copy of CP1 consists of the elements of CP3 with homogeneous coordinates [0, δ1,

δ2, 0]; the corresponding CP1-family of positive orthogonal complex structures on (W, g)

consists of all elements which commute with but differ from both J0 and J3. The (1, 0)-space
of any such a structure is spanned by the complex vectors

Z J
0 = δ1 Z1 + δ2 Z2;

Z J
1 = Z3;

Z J
3 = −δ2 Z1 + δ1 Z2.

(5)
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(b) The copy of C
2 in CP3 is determined by the elements with homogeneous coordinates

[0, γ1, γ2, 1], i.e., the corresponding family of positive orthogonal complex structures on (W, g)

consists of all elements which commute with J0 but do not commute with J3. The (1, 0)-space
of any such a structure is spanned by the complex vectors

Z J
0 = γ1 Z1 + γ2 Z2 + Z3;

Z J
2 = Z2 − γ2 Z3;

Z J
3 = − Z1 + γ1 Z3.

(6)

(c) The copy of C
3 is determined by the elements of CP3 with homogeneous coordinates

[1, β1, β2, β3], i.e., which have a (1, 0)-space spanned by the complex vectors

Z J
1 = Z1 + β3 Z2 − β2 Z3;

Z J
2 = Z2 − β3 Z1 + β1 Z3;

Z J
3 = Z3 + β2 Z1 − β1 Z2.

(7)

Equivalently, the family (c) consists of all positive orthogonal almost-complex structures which
do not commute with J0.

2.3. Riemannian 6-manifolds with trivial twistor bundle

We will apply the above pointwise considerations to study global orthogonal complex struc-
tures on Riemannian 6-manifolds (M, g) whose twistor bundle Z+M �→ M is trivialized by
four mutually commuting orthogonal almost complex structures {J0, J1, J2, J3}. Observe that
J0 = ±J1 ◦ J2 ◦ J3, hence our condition is in fact equivalent to the existence of three mutually
commuting orthogonal almost complex structures. As in the 4-dimensional case, the triviality
of the twistor bundle leads to some topological restrictions of the manifold. More precisely we
have the following

Proposition 1. Let M be a compact 6-manifold admitting three mutually commuting almost
complex structures. Then there exist elements ωi , i = 1, 2, 3 of H 2(M, Z) satisfying the fol-
lowing properties:

(i) ω1 + ω2 + ω3 ≡ w2(M) (mod 2);
(ii) ω2

1 + ω2
2 + ω2

3 = p1(M) ≡ ω1ω2 + ω1ω3 + ω2ω3 (mod 2);
(iii) ω1ω2ω3 = e(M),

where w2(M), p1(M) and e(M) are the second Stiefel class, the first Pontrjagin class and the
Euler class of M , respectively, and (mod 2) denotes the natural homomorphism H 2(M, Z) �→
H 2(M, Z2).

Conversely, for any oriented compact 6-manifold M whose cohomology group H 4(M, Z)

has no elements of order four, existence of elements ωi , i = 1, 2, 3 ∈ H 2(M, Z) satisfying the
conditions above implies the existence of three mutually commuting almost complex structures
on M.

Proof. Let {J1, J2, J3} be a triple of mutually commuting almost complex structures on M and
put J0 = J1 ◦ J2 ◦ J3, Qi = J0 ◦ Ji , i = 1, 2, 3. Then J0 is an almost complex structure on M
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commuting with any almost complex structure Ji , and Qi are J0-invariant, mutually commuting
involutions on the tangent bundle T M . We then have the splitting

T M = T1 ⊕ T2 ⊕ T3, (8)

where Ti , i = 1, 2, 3 are J0-invariant 2-dimensional sub-bundles of T M , which are eigen-
spaces for any Qi . The almost complex structure J0 induces complex structures on the real
vector bundles T M and Ti , i = 1, 2, 3. Denote by ωi the first Chern classes of the complex line
bundles Ti , respectively. We then have by (8):

c1(M, J0) = ω1 + ω2 + ω3,

c2(M, J0) = 1
2(c2

1(M, J0) − p1(M)) = ω1ω2 + ω2ω3 + ω1ω3,

c3(M, J0) = e(M) = ω1ω2ω3.

Moreover, on any oriented compact 6-manifold the Stiefel classes are determined by the Wu
formula (cf. [25]); we calculate w2(M) = v2; w4(M) = v2

2 = w2(M)2, where, we recall, v2 is
determined as dual to

Sq2 : H 4(M, Z2) �→ H 6(M, Z2) ∼= Z2.

Now the claim follows by the well known properties: w2(M) = c1(M, J0) (mod 2); w2(M)2 =
p1(M) (mod 2); w4(M) = c2(M, J0) (mod 2).

Let M be an oriented compact 6-manifold whose cohomology group H 4(M, Z) has no
elements of order 4 and suppose that there are elements ωi , i = 1, 2, 3 of H 2(M, Z) satisfying
conditions (i), (ii) and (iii). Any ωi determines a complex line bundle Li over M , such that the
first Chern class c1(Li ) of Li is ωi . Consider the 6-dimensional oriented real vector bundle LR

over M , underlying the complex rank 3 bundle L = L1 ⊕ L2 ⊕ L3; we easily compute:

w2(LR) = c1(L)(mod 2) = ω1 + ω2 + ω3 (mod 2),

w4(LR) = c2(L)(mod 2) = ω1ω2 + ω1ω3 + ω2ω3 (mod 2),

p1(LR) = c2
1(L) − 2c2(L) = ω2

1 + ω2
2 + ω2

3,

e(LR) = c3(L) = ω1ω2ω3,

where wi (LR), i = 2, 4, p1(LR) and e(LR) are the corresponding Stiefel classes, the first
Pontrjagin class and the Euler class of LR, respectively, and ci (L), i = 1, 2, 3 are the Chern
classes of L . As we have already mentioned, on any oriented compact 6-manifold M , the
Stiefel classes w4(M) and w2(M) are related by w4(M) = w2(M)2; we then get from (i), (ii),
(iii): w2(LR) = w2(M); w4(LR) = w4(M); p1(LR) = p1(M); e(LR) = e(M). According to
[15, Prop.1] (see also [39]), the tangent bundle T M is then isomorphic to the real vector bundle
LR, i.e., the splitting (8) holds true for some oriented 2-dimensional vector subbundles Ti of
T M . Choosing complex structure ji on any Ti and putting

J0 = j1 + j2 + j3, J1 = j1 − j2 − j3,

J2 = − j1 + j2 − j3, J3 = − j1 − j2 + j3,

we get four mutually commuting almost complex structures on M . �
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Remark 1. Given four commuting almost complex structures {J0, J1, J2, J3} on M it can be
easily seen that there exists a Riemannian metric g compatible with any Ji , i = 0, 1, 2, 3.
Indeed, considering the splitting (8) of the tangent bundle T M determined by {J0, J1, J2, J3}
let gi be a Hermitian metric on Ti . Then a Riemannian metric g on M is compatible with any
Ji iff the splitting (8) is g-orthogonal, i.e., iff g has the form g = f1g1 + f2g2 + f3g3 for some
positive smooth functions f1, f2, f3 of M .

3. Examples

3.1. Product of three Riemann surfaces

The simplest example of Riemannian 6-manifold admitting four commuting complex struc-
tures is the product M = �1×�2×�3 of three oriented Riemann surfaces (�i , gi ). Changing the
orientation of any �i we obtain in fact four commuting Kähler structures {J0, J1, J2, J3}, which
are the products of the corresponding Kähler structures on (�i , gi ). Conversely, any Riemann-
ian 6-manifold (M, g) that admits four mutually commuting Kähler structures {J0, J1, J2, J3}
is locally isometric to the product of three Riemann surfaces. Indeed, in this case the involutions
Qi = J0 ◦ Ji , i = 1, 2, 3 are preserved by the Levi-Civita connection of (M, g), hence the
holonomy group of (M, g) preserves the orthogonal splitting (8) of T M .

The next statement shows that in general {J0, J1, J2, J3} are the only orthogonal complex
structures on �1 × �2 × �3:

Theorem 3. Let (M, g) = �1 × �2 × �3 be the product of oriented Riemann surfaces
(�i , gi ), i = 1, 2, 3 with Gauss curvatures ki , respectively. Suppose that

ki + k j �= 0, i, j ∈ {1, 2, 3}, i �= j (9)

at some point of M. Then g admits exactly four positive orthogonal complex structures, which
are Kähler and mutually commute.

Proof. Denote by ji the complex structure on �i and let

J0 = j1 + j2 + j3, J1 = j1 − j2 − j3,

J2 = − j1 + j2 − j3, J3 = − j1 − j2 + j3

be the four commuting Kähler structures of (M, g). Consider the open subset U of M , where (9)
is satisfied and let Z+

0 U be the zero set of the Nijenhuis tensor of the twistor space of (U, g),
see Section 2.1. Then we have

Lemma 1. The zero set Z+
0 U consists of J0, J1, J2 and J3.

Proof of Lemma 1. Consider the unitary complex (1, 0)-vectors Zi , i = 1, 2, 3 on the com-
plexified tangent bundle Ti ⊗ C of each Riemannian surface (�i , gi , ji ). Then the curvature R
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of the product metric g is given by

R(Zi ∧ Z̄i ) = ki Zi ∧ Z̄i ;
R(Zi ∧ Z j ) = 0; R(Zi ∧ Z̄ j ) = 0, i, j ∈ {1, 2, 3}, i �= j.

(10)

Suppose that J is an orthogonal almost complex structure of (U, g), defined at some point
x ∈ M , which satisfies (1) (i.e., J belongs to π−1(x) ∩ Z+

0 U). If J belongs to the CP1-family
(a) of orthogonal almost complex structures at x , then there are complex numbers δ1 and δ2,
such that the (1, 0)-space of J is spanned by the complex vectors Z J

0 , Z J
1 , Z J

3 defined by (5).
Thus, using (10) and the fact that J satisfies (1), we obtain (k1 + k2)δ

2
1δ

2
2 = 0, i.e., δ1δ2 = 0

since on U the condition (9) holds. Hence J coincides with either J1 or J2. Similarly, if J
belongs to the C

2-family (b), we get by (6) and (10) that the condition (1) is equivalent to
γ 2

1 (k2 + k3) = γ 2
2 (k1 + k3) = 0, i.e., γ1 = γ2 = 0 because of (10). This shows that J = J3.

Finally, consider the case that the almost complex structure J belongs to the C
3-family of

almost complex structures at x , described in (c). Using (7) and (10) we obtain in this case that
the condition (1) is equivalent to

β2
1 (k2 + k3) = β2

2 (k1 + k3) = β2
3 (k1 + k2) = 0,

hence we get from (10) βi = 0, i = 1, 2, 3, i.e., J = J0. �

Now Theorem 3 follows immediately. Indeed, if J is an integrable orthogonal almost complex
structure of (M, g), then J belongs to Z+

0 U and it follows by Lemma 1 that J coincides with
one of the orthogonal complex structures J0, J1, J2, J3 on any connected open subset of U.
Hence, according to [31, Remark 1.5 (2)], this holds everywhere on M . �

3.2. Flag manifold

Let F1,2 = U(3)/U(1)×U(1)×U(1) be the complex 3-dimensional flag manifold. Consider
the reductive decomposition of u(3)

u(3) = h ⊕ m,

where u(3) is the Lie algebra of the unitary group U(3) and h and m are determined by:

h =




iα 0 0

0 iβ 0

0 0 iγ


 ∼= u(1) ⊕ u(1) ⊕ u(1) ⊂ u(3);

m =




0 a b

−ā 0 c

−b̄ −c̄ 0


 ⊂ u(3).
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Identifying any element X ∈ T F1,2
∼= m with the corresponding triple of complex numbers

(a, b, c), we consider the U(3)-left-invariant Riemannian metric gλ1,λ2,λ3 on F1,2 defined by

gλ1,λ2,λ3(X, X) = λ1|a|2 + λ2|b|2 + λ3|c|2, ∀X ∈ T F1,2,

where λ1, λ2, λ3 are real positive numbers. It is well known that when λ1, λ2, λ3 vary, the set
of the metrics gλ1,λ2,λ3 exhaust all U(3)-left-invariant metrics on F1,2.

The (left) invariant almost complex structures on F1,2 are described by

Jε1ε2ε3 : (a, b, c) → (ε1ia, ε2ib, ε3ic), εi ∈ {±1}, i = 1, 2, 3.

The positive ones are characterized by the condition ε1ε2ε3 = 1, hence there are exactly four
distinct positive U(3)-left-invariant almost complex structures, J1 = J−1,−1,1; J2 = J1,1,1; J3 =
J1,−1,−1 and J0 = J−1,1,−1, which are compatible with any invariant metric gλ1,λ2,λ3 and mutually
commute. It is easily checked that J1, J2 and J3 are integrable, while J0 is bi-invarint with
nowhere vanishing Neijenhuis tensor. Since J1, J2 and J3 all satisfy (1) with respect to any
invariant metric (as being integrable), so does J0 = J1◦ J2◦ J3 (see Section 2.2). More precisely,
the zero set Z+

0 (F1,2, g) with respect to any left-invariant metric g of F1,2 is determined by the
following

Lemma 2. Let g = gλ1,λ2,λ3 be a left-invariant metric of F1,2. For any i ∈ {1, 2, 3} denote
by Pi the CP1-bundle over F1,2 whose fibre at any point x ∈ F1,2 consists of all positive,
g-orthogonal almost complex structures at x that commute with but differ from J0 and Ji . If we
put Ci = 3(λi−1 + λi+1)λi − (λi−1 − λi+1)

2, i = 1, 2, 3, (where λ0 = λ3; λ4 = λ1), then the
zero set Z+

0 (F1,2, g) is determined as follows:
(i) if for some i ∈ {1, 2, 3} the positive real numbers λi , i = 1, 2, 3 satisfy Ci = 0 and

λi−1 �= λi �= λi+1, then Z+
0 (F1,2, g) consists of J0, Ji and the bundle Pi ;

(ii) if for some i ∈ {1, 2, 3} the positive real numbers λi , i = 1, 2, 3 satisfy Ci = 0 and
λi = λi−1, then Z+

0 (F1,2, g) consists of J0 and the bundles Pi and Pi−1;
(iii) in any other case Z0(F1,2, g) consists of J0, J1, J2 and J3.

Proof. We will use the following well-known expression for the curvature R of g (see for
example [11, Ch.7]):

R(X, Y, X, Y ) = 3
4 g([X, Y ]m, [X, Y ]m) + g([[X, Y ]h, Y ], X)

+ 1
2 g(X, [Y, [Y, X ]m]m) + 1

2 g(Y, [X, [X, Y ]m]m)

+ g(U (X, X), U (Y, Y )) − g(U (X, Y ), U (X, Y )),

(11)

where U : m × m → m is the tensor defined by

2g(U (X, Y ), Z) = g([Z , X ]m, Y ) + g([Z , Y ]m, X),

for any X, Y, Z ∈ m and [· , ·]m (resp. [· , ·]h) denotes the projection of the commutator of two
elements of m into m (resp. h).

Consider the g-unitary frame {Z1, Z2, Z3} of T 1,0
J0

determined by the elements λ
−1/2
1 (1, 0, 0);

λ
−1/2
2 (0, 1, 0); λ

−1/2
3 (0, 0, 1) of m. Then we have the parametrization (4) of the orthogonal al-

most complex structures of (F1,2, g), obtained with respect to the four commuting left-invariant
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almost complex structures {J0, J1, J2, J3}. Suppose that J is a positive orthogonal complex
structure at x ∈ F1,2. If J belongs to the CP1-family (a) (see Section 2.2), then there are
complex numbers δ1, δ2, such that the (1, 0)-space of J is spanned by the complex vectors
Z J

0 , Z J
1 , Z J

3 , defined by (5). Observe that Z J
0 , Z J

1 ∈ T 0,1
J3

and Z J
1 , Z J

3 ∈ T 0,1
J0

, hence

R(Z J
0 , Z J

1 , Z J
0 , Z J

1 ) = R(Z J
1 , Z J

3 , Z J
1 , Z J

3 ) = 0, (12)

since any of J0, J1, J2, J3 belongs to Z+
0 (F1,2, g). Using (11) and (12) we further compute

R(Z J
0 , Z J

3 , Z J
0 , Z J

3 ) = 2δ2
1δ

2
2

λ1λ2λ3
C3;

2R(Z J
0 , Z J

3 , Z J
1 , Z J

3 )

= R(Z J
0 + Z J

1 , Z J
3 , Z J

0 + Z J
1 , Z J

3 ) − R(Z J
0 , Z J

3 , Z J
0 , Z J

3 ) = 0,

2R(Z J
0 , Z J

3 , Z J
0 , Z J

1 )

= R(Z J
1 + Z J

3 , Z J
0 , Z J

1 + Z J
3 , Z J

0 ) − R(Z J
0 , Z J

3 , Z J
0 , Z J

3 ) = 0,

2R(Z J
0 , Z J

1 , Z J
1 , Z J

3 ) = R(Z J
0 + Z J

3 , Z J
1 , Z J

0 + Z J
3 , Z J

1 ) = 0.

(13)

It follows from (12) and (13) that J belongs to π−1(x)∩ Z+
0 (F1,2, g) iff δ1δ2C3 = 0. In the case

when the positive real numbers λi satisfy C3 = 0 any element in the CP1-family (a) satisfies
(1), i.e., P3 ⊂ Z+

0 (F1,2, g); otherwise we obtain that either δ1 = 0, i.e., J = ±J2, or δ2 = 0,
i.e., J = ±J1.

If J belongs to the C
2-family (b) at x ∈ F1,2, then there are complex numbers γ2, γ3 such

that the (1, 0) space of J is spanned by the complex vectors Z J
0 , Z J

2 , Z J
3 defined by (6). Using

(11) and the fact that J0, J1, J2, J3 satisfy (1) we obtain

R(Z J
2 , Z J

3 , Z J
2 , Z J

3 ) = 0,

R(Z J
0 , Z J

2 , Z J
0 , Z J

2 ) = 2γ 2
2

λ1λ2λ3
C1,

R(Z J
0 , Z J

3 , Z J
0 , Z J

3 ) = 2γ 2
1

λ1λ2λ3
C2,

2R(Z J
0 , Z J

3 , Z J
2 , Z J

3 ) = R(Z J
0 , Z J

3 , Z J
0 , Z J

3 ) − R(Z J
0 − Z J

2 , Z J
3 , Z0 − Z2, Z J

3 )

= 2γ 2
1

λ1λ2λ3
C2,

2R(Z J
0 , Z J

2 , Z J
0 , Z J

3 ) = R(Z J
0 , Z J

2 + Z J
3 , Z0, Z J

2 + Z J
3 ) − R(Z J

0 , Z J
2 , Z J

0 , Z J
2 )

−R(Z J
0 , Z J

3 , Z J
0 , Z J

3 )

= 2γ1γ2

λ1λ2λ3
[C1 + C2 − C3],

2R(Z J
0 , Z J

2 , Z J
2 , Z J

3 ) = R(Z J
0 , Z J

2 , Z J
0 , Z J

2 ) − R(Z J
0 − Z J

3 , Z J
2 , Z0 − Z J

3 , Z J
2 )

= 2γ 2
2

λ1λ2λ3
C1,
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It thus follows that J belongs to π−1(x) ∩ Z+
0 (F1,2, g) iff

γ1C2 = γ2C1 = γ1γ2C3 = 0. (14)

Since the equality C1 = C2 = C3 = 0 is impossible we get from (14) γ1γ2 = 0. Moreover, in
the case when the positive real numbers λi , i = 1, 2, 3 satisfy λ1 �= λ2 and C1 = 0 or λ1 �= λ2

and C2 = 0 we obtain respectively γ2 = 0 or γ1 = 0, i.e., π−1(x) ∩ Z+
0 (F1,2, g) restricted to

the family (b) consists of P1 or P2, respectively; if λ1 = λ2 and C1 = C2 = 0 it consists of
both P1 and P2; in any other case we get from (14) γ1 = γ2 = 0, i.e., π−1(x) ∩ Z+

0 (F1,2, g)

consists of J3 only.
Finally, consider the case that J belongs to the C

3-family (c) of positive orthogonal almost
complex structures at x ∈ F1,2. Similarly, we get from (7) and (11) that if (1) holds for J , then
for the corresponding complex numbers βi , i = 1, 2, 3 the following equalities hold:

R(Z J
1 , Z J

2 , Z J
1 , Z J

2 ) = β2
3

λ1λ2λ3
[3λ2

3 + (λ1 − λ2)
2] = 0;

R(Z J
1 , Z J

3 , Z J
1 , Z J

3 ) = β2
2

λ1λ2λ3
[3λ2

2 + (λ3 − λ1)
2] = 0;

R(Z J
2 , Z J

3 , Z J
2 , Z J

3 ) = β2
1

λ1λ2λ3
[3λ2

1 + (λ3 − λ2)
2] = 0,

and we get βi = 0, i = 1, 2, 3, i.e., J = J0.
Summarizing, the lemma follows. �

Remark 2. It can be easily deduced from (11) that (g2,1,1, J1), (g1,2,1, J2) and (g1,1,2, J3)

are Kähler–Einstein structures of non-negative (but not identically vanishing) holomorphic
sectional curvature on F1,2. It is allso known that there are automorphisms of F1,2 (coming
from elements of the Weyl group of SU(3)) which switch the three Kähler–Einstein structures.
The bi-invariant metric g1,1,1 is also Einstein but non-Kähler with respect to any Ji , i = 1, 2, 3
(see [7]).

Proof of Theorem 1. Assume that J is an integrable positive g-orthogonal almost complex
structure on an open subset U of F1,2, different from J1, J2, J3. Since (1) is satisfied at any point
of U, according to Lemma 2, J is a section of Pi for some i ∈ {1, 2, 3}. Suppose for example
that J is a section of P1 (the case that J is a section of P2 and P3 can be considered similarly).
Any section of P1 has homogeneus coordinates [0, 0, α2, α3] with respect to {J0, J1, J2, J3} ; it
thus follows by (4) that it is orthogonal with respect to the one-parameter family of left-invariant
metrics gλ1,tλ2,tλ3, t > 0. We get that the complex structure J belongs to Z+

0 (F1,2, gλ1,tλ2,tλ3)

for any t > 0. According to Lemma 2 the equality 3t (λ2 + λ3)λ1 − t2(λ2 − λ2)
2 = 0 holds for

any t > 0, a contradiction. �

Proof of Corollary 1. Let U be the non-empty open subset of F1,2 where the differential of
f has maximal rank. As f is a harmonic map between real analytic spaces, U is dense in
F1,2. It follows from [14, Cor. 2] that there is a positive orthogonal complex structure J on
U and f is J -holomorphic. According to Theorem 1, J coincides with one of the structures
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±Ji , i = 1, 2, 3 on any connected subset of U. But for any left-invariant metric g on F1,2 the
co-differential of the Kähler form of (g, Ji ) is zero. Indeed, since the Kähler form of (g, Ji )

is U(3)-left-invariant, the same is true for its co-differential, hence it is of constant length and
then vanishes because the Euler characteristic of F1,2 is positive. Thus f is a harmonic map
from (U, g) to M [32, Prop. 2.1], and since U is dense in F1,2, we obtain that f is harmonic
with respect to any left-invariant metric on F1,2, i.e., f is equiharmonic. It is easy now to prove
that f is ±-holomorphic with respect to some of the complex structures Ji , i = 1, 2, 3: As
we have already observed, on any connected subset U0 of U the function f is holomorphic
with respect to some of the complex structures ±Ji , i = 1, 2, 3, say J1. Take the left-invariant
Kähler–Einstein metric g = g2,1,1 with respect to J1 (see Remark 2). Then f is a harmonic map
between compact Kähler manifolds, (F1,2, g, J1) and M, which is holomorphic on a non-empty
open subset of F1,2, hence on all of F1,2 by Siu’s Unique Continuation Theorem [36]. �

Remark 3. See [12] for the corresponding results concerning stable harmonic maps between
Hermitian-symmetric spaces.

4. Fano 3-folds admitting commuting complex structures

We now consider the two homogeneous 6-manifolds CP1 ×CP2 ×CP1 and F1,2 with some
of its invariant complex structures described in the preceding section. Observing that they are
both spin manifolds with positive first Chern class, we give a necessary and sufficient conditions
a compact spin Fano 3-fold to be biholomorphically equivalent to either CP1 × CP1 × CP1

or F1,2 in terms of the existence of three commuting almost complex structures.

Proposition 2. Suppose that a compact spin 6-manifold M admits three commuting almost
complex structures J1, J2, J3 which satisfy the following properties:

(i) J1 is integrable and (M, J1) is a Fano 3-fold, i.e., c1(M, J1) > 0;
(ii) J2 is integrable of Kähler type;

(iii) there exists a Kähler metric g on (M, J1), which is compatible with J2.
Then (M, J1) is biholomorphic to either CP1 × CP1 × CP1 or F1,2.

Proof. We claim that the second Betti number b2(M) is grater that 2. To this end, suppose that
b2(M) = 1. Then we have c1(M, J2) = c�J2 , where �J2 is a Kähler form on (M, J2) and c is a
real constant. Suppose first that c = 0, i.e., c1(M, J2) = 0. Since (M, J1) is a Fano 3-fold with
b2(M) = 1, we have in fact H 2(M, Z) = Z. According to Proposition 1 the existence of three
commuting almost complex structures J1, J2, J3 on M with c1(M, J2) = 0 implies that there
are integers a1, a2, a1 + a2 > 0, such that

c1(M, J1) = 2(a1 + a2)h;
p1(M) = 2(a2

1 + a2
2 + a1a2)h

2;
e(M) = a1a2(a1 + a2)h

3,

(15)

where h is the generator of H 2(M, Z). Moreover, since the Chern numbers of any Fano 3-fold
satisfy c1c2 = 24 (see for example [28] for a nice overview on the classification and some
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properties of Fano manifolds), we get by (15)

(a1 + a2)
(
a1a2 + (a1 + a2)

2)h3 = 12. (16)

If a1+a2 � 2, by the result of Kobayshi and Ochiai [22] (M, J1) is biholomorphically equivalent
to CP3 and then a1 +a2 = 2, h3 = 1, i.e., a1a2 = 2, a contradiction. We thus have a1 +a2 = 1
and then 1 � h3 � 9, cf. [28], which again contradicts with (16).

Assume now that c �= 0, i.e., c1(M, J2) is either positive or negative definite. Consider the
case c > 0, i.e., c1(M, J2) > 0 (the case c1(M, J2) < 0 can be considered similarly). As
J1 and J2 are mutually commuting orthogonal (almost) complex structures with respect to the
Riemannian metric g, it follows that the Kähler form �J1 of (g, J1) is a (1, 1)-form with respect
to J2. From the assumption b2(M) = 1 we get

a�J1 = γJ2 + i∂J2 ∂̄J2 f, (17)

where γJ2 is a positive (1, 1)-form on (M, J2), representing cR
1 (J2), a is a non zero real constant,

and f is a real-valued function. Let x be a point of minimum of f . Then at x the (1, 1) form
i∂J2 ∂̄J2 f is semi-positive with respect to J2. Since J1 and J2 commute but do not coincide,
there exist non-zero tangent vectors X ′, X ′′ ∈ Tx M such that J1 X ′ = J2 X ′′, J1 X ′′ = −J2 X ′.
We obtain from these

�J1(J2 X ′, X ′) = g(X ′, X ′), �J1(J2 X ′′, X ′′) = −g(X ′′, X ′′). (18)

But we have at x

γJ2(X, J2 X) > 0, i∂J2 ∂̄J2 f (X, J2 X) � 0,

for any non-zero tangent vector X , hence (18) contradict (17).
Thus b2(M) � 2 and since M is spin, (M, J1) is a Fano 3-fold of index 2 and Picard group

of rank � 2. It follows from the classification of Fano 3-folds [19, 20, 27], that (M, J1) is
biholomorphic to one of the following complex 3-folds: CP1 ×CP1 ×CP1, F1,2, C̃P3, where
C̃P3 ∼= P(O ⊕ O(1)) is one-point blow-up of CP3. We are going to prove that C̃P3 does not
admit 3 commuting almost complex structures (but it is clear that it admits two commuting
almost complex structures defined by reversing the sign of the complex structure on the fibre).
We shall make use of some standard facts about Chern classes and the cohomology ring of
projective bundle over complex manifold, which could be found in [17]. For any holomrphic
vector bundle p : E → X there is a projectivization π : P(E) → X and an exact sequence of
sheaves:

O −→ OP(E) −→ π∗E ⊗ OE(1) −→ TP(E) −→ π∗TX −→ 0,

where TX is the holomorphic tangent bundle of X and OE(1) is the bundle over P(E) which
restricted on the fibre is O(1). We then have

ct(TP(E)) = ct(π
∗Tx)ct(π

∗E ⊗ OE(1)),
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where ct is the Chern polynomial of the corresponding bundle. It is also known that

cp(E ⊗ L) =
p∑

i=0

(
r − i

p − i

)
ci (E)c1(L)p−i ,

for the bundles E and L of ranks r and 1, respectively.
Set h̃ = c1(OE(1)), h = c1(π

∗O
CP2(1)). Then the cohomology ring H∗(C̃P3, Z) is gener-

ated by h and h̃ with the relations h3 = h̃3 = 0 and h̃2 + hh̃ = 0 between them. Furthermore,
we compute for the projectivisation C̃P3 of E = O ⊕ O(1)

c1(C̃P3) = c1(π
∗T

CP2) + c1(π
∗E ⊗ OE(1)) = 4h + 2h̃;

c2(C̃P3) = c2(π
∗T

CP2) + c2(π
∗E ⊗ OE(1)) + c1(T

CP2)c1(π
∗E ⊗ OE(1);

c2(C̃P3) = 3h2 + h̃2 + hh̃ + 3h(2h̃ + h) = 6h2 + 6hh̃;
p1(C̃P3) = c2

1(C̃P3) − 2c2(C̃P3) = (4h + 2h̃)2 − 2(6h2 + 6hh̃) = 4h2.

Suppose that C̃P3 admits three mutually commuting orthogonal almost complex structures.
Then by Proposition 1 there exist ωi ∈ H 2(C̃P3, Z), i = 1, 2, 3 such that:

ω1 + ω2 + ω3 = c1(C̃P3) = 4h + 2h̃, ω2
1 + ω2

2 + ω2
3 = p1(C̃P3) = 4h2.

If ωi = ai h + bi h̃, i = 1, 2, 3, we obtain from the above formulas that

a1 + a2 + a3 = 4, a2
1 + a2

2 + a2
3 = 4.

But the latter equalities are impossible for any integers a1, a2, a3, hence C̃P3 doesn’t admit
three commuting almost complex structures. �

Regarding now to the homogeneous spaces CP1 × CP1 × CP1 and F1,2 with its (left)
invariant Kähler–Einstein structures described in the preceding section (see Remark 2) we are
ready to prove Theorem 2.

Proof of Theorem 2. We start with the following observation, which can be considered as a
6-dimensional analogue of [13, Theorem 5.6].

Lemma 3. Let (M, g, J ) be a Kähler–Einstein, non-Ricci-flat manifold of real dimension 6
with non-negative (non-positive) holomorphic sectional curvature. Then any orthogonal com-
plex structure on (M, g) commutes with J .

Proof of Lemma 3. Suppose that J ′ is a positive orthogonal complex structure on (M, g),
different from J . Fix a point x ∈ M and let [v], [v′] ∈ P(V ) ∼= CP3 be the points of the
twistor fibre SO(6)/U(3) ∼= CP3 at x , corresponding to J and J ′ (see Section 2.2). As we have
already mentioned (cf. [5, Lemma 1]), J and J ′ commute if and only if h(v, v′) = 0, where
h is the standard metric on the twistor fibre CP3. Thus, writing v′ = αv/|v| + v1, where α is
a complex number and v1 is non-zero vector, orthogonal to v, we have to prove that α = 0.
Without lose of generality we may assume that h(v1, v1) = 1. Setting v0 = v/|v|, we consider
a unitary frame {v0, v1, v2, v3} of (V, h), which defines four mutually commuting orthogonal
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complex structures J = J0, J1, J2, J3 of (Tx M, g). According to (4) we have

T 1,0
J ′ = span{Z1, αZ2 + Z̄3, αZ3 − Z̄2}, (19)

where {Z1, Z2, Z3} is the unitary frame of T 1,0
J , defined by (3). Since J ′ is integrable, the

condition (1) is satisfied at x . Using (19) and the fact that (g, J ) is Kähler we then calculate

α2(R(Z2, Z̄2, Z2, Z̄2) + R(Z3, Z̄3, Z3, Z̄3) + 2R(Z2, Z̄2, Z3, Z̄3)
) = 0, (20)

where R is the curvature of (M, g). The Einstein condition on a Kähler manifold of real
dimension 6 reads as

R(Z1, Z̄1, · , · ) + R(Z2, Z̄2, · , · ) + R(Z3, Z̄3, ·, · ) = − 1
6 isg(J · , · ),

where s �= 0 is the scalar curvature of (M, g). Then (20) can be rewritten as

α2[ 1
6 s + R(Z1, Z̄1, Z1, Z̄1)

] = 0,

and hence α = 0 since the holomorphic sectional curvature and the scalar curvature could not
have opposite signs, cf. [9, Theorem 2]. �

To prove Theorem 2 observe first that the scalar curvature s of g is a positive constant
since the holomorphic sectional curvature of (g, J ) is non-negative but does not identically
vanish. Indeed, using the first Bianchi identity and the fact that g is Kähler, we get for the
scalar curvature s:

s = 2
∑
i, j

R(Z j , Z̄i , Zi , Z̄ j )

= 2
∑

k

R(Zk, Z̄k, Zk, Z̄k) + 2
∑
i �= j

R(Zi , Z̄i , Z j , Z̄ j ),

where {Zk}3
k=1 is any unitary frame of T 1,0

J . On the other hand it is shown in the proof of
[9, Theorem 2] that on any Kähler manifold (M, g, J ) of non-negative holomorphic sectional
curvature the following inequality holds:

2( 1
2 dimR M − 1)

∑
k

R(Zk, Z̄k, Zk, Z̄k) + 4
∑
i �= j

R(Zi , Z̄i , Z j , Z̄ j ) � 0.

It is easilly seen that the inequality above is strict at any point where the holomorphic sectional
curvature does not identically vanishes. On Kähler 3-folds it reduces to s � 0 and since the
holomorphic sectional curvature does not identically vanishes, we infer that the scalar curvature
s is a positive constant. Now it follows from Lemma 3 that J and J ′ mutually commute. As
(g, J ) is Kähler–Einstein of positive scalar curvature we have c1(M, J ) > 0, i.e., (M, J ) is
Fano 3-fold. Using the same arguments as in the proof of Proposition 2 we obtain that (M, J ) is
biholomorphic to one of the following spaces: CP1 ×CP1 ×CP1, F1,2, C̃P3 where, we recall,
C̃P3 is one-point blow-up of CP3. But the automorphism group of C̃P3 has non-reductive Lie
algebra since its matrix representation has a zero column. By the Matsushima–Lichnerovich
obstruction (see, e.g., [11, 11.D]), we know that C̃P3 does not admit Kähler–Einstein metrics at
all. Moreover, according to the uniqueness of Kähler–Einstein metrics modulo biholomorphisms
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[10, 24, 23] we have that (g, J ) must be one of the invariant Kähler–Einstein structures on
CP1 × CP1 × CP1 or F1,2. Now the last part of the theorem follows from Theorems 3 and 1.
�

Remark 4. The proof of Lemma 3 shows that the Kähler–Einstein condition can be relaxed by
an appropriate pinching condition on the Ricci tensor. On the other hand the following examples
are related to the necessity of the conditions of Theorem 2:

(i) CP3 with the Fubini–Study metric is a Kähler–Einstein spin manifold with positive
holomorphic sectional curvature admitting abundance of local orthogonal complex structures,
which does not admit a global one.

(ii) CP1 × CP2 admits Kähler–Einstein metric of non-negative holomorphic sectional cur-
vature and global orthogonal complex structure different from the standard one, but it is not a
spin manifold.

Acknowledgements

The first-named author thanks the Institut des Hautes Études Scientifiques and the Centre
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