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Abstract. We prove that every compact almost Kähler 4-manifold which satisfies the second
curvature condition of Gray [4] is necessarily Kähler.

Un théorème d’intégrabilité pour les variétés presque-kählériennes de dimension 4

Résumé. Nous démontrons que chaque variété presque-kählérienne compacte de dimension 4 qui
satisfait à la deuxième condition de Gray [4] est kählérienne.

Version française abrégée

Rappelons qu’une structure presque-kählérienne sur une variété M de dimension réelle 2n est la
donnée d’une structure presque-hermitienne (g, J) dont la 2-forme fondamentale Ω est fermée et
fournit alors une structure symplectique; si de plus la structure presque-complexe est intégrable, le
triplet (g, J,Ω) définit une structure kählérienne. Un problème naturel consiste à trouver des con-
ditions sur la courbure riemannienne d’une variété presque-kählérienne qui assurent l’intégrabilité
de la structure presque-complexe correspondante. Par exemple, une ancienne conjecture de Gold-
berg [5] — toujours ouverte — affirme que chaque variété presque-kählérienne compacte d’Einstein
est kählérienne.

Dans cette Note nous démontrons que sur une variété presque-kählérienne compacte de di-
mension 4 une condition sur la courbure riemannienne (introduite par A. Gray [4]) implique
l’intégrabilité de la structure presque-complexe. En dimension 4 cette “deuxième condition de
Gray” signifie que le tenseur de Ricci est J-invariant et que le tenseur de Weyl positif W+ (con-
sidéré comme un endomorphisme symétrique sans trace du fibré de 2-formes autoduales) est de
spectre partout dégénéré de manière qu’en chaque point où W+ ne s’annule pas, Ω est sa forme pro-
pre correspondant à la valeur propre de multiplicité 1. Une étude de telles variétés a été récemment
developpée dans [1]. Nous complétons ici les résultats obtenus dans [1] par le théorème suivant.

Théorème 1 Une variété presque-kählérienne compacte de dimension 4 dont la courbure rieman-
nienne satisfait à la deuxième condition de Gray est kählérienne.

Remarquons qu’un tel résultat n’est plus disponible en dimension 2n, n ≥ 3 (voir [3]).
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1 Introduction

An almost Kähler structure on a manifold M2n is an almost Hermitian structure (g, J,Ω) for
which the fundamental 2-form Ω is closed, and therefore symplectic. If, additionally, the almost
complex structure J is integrable, the triple (g, J,Ω) is a Kähler structure on M . There have been
many attempts to find sufficient curvature conditions for an almost Kähler structure to ensure
integrability. For example, an old, still open conjecture of Goldberg [5] says that a compact almost
Kähler, Einstein manifold should be Kähler.

In this note we show that a certain curvature condition first considered by Gray [4] implies
integrability for closed manifolds in dimension 4.

It is well known that the curvature of a Kähler metric has strong symmetry properties with
respect to the complex structure. On the other hand, an arbitrary almost Kähler metric may have
none of these. The condition that the Ricci tensor is J-invariant could be considered to be the
minimal degree of resemblance with the Kähler symmetries. This weakly Einstein condition arises
naturally from the U(n)-decomposition of the curvature [8], and may be even more natural in
the context of almost Kähler geometry — interesting variational problems on compact symplectic
manifolds lead to almost Kähler metrics with J-invariant Ricci tensor. It was shown in [2] that
such almost Kähler metrics are the critical points of the Hilbert functional, the integral of the
scalar curvature, restricted to the set of all metrics compatible with a given symplectic form.
Compatible Kähler metrics provide absolute maxima for the functional in this setting. It was a
natural question [2] to ask if the J-invariance of the Ricci tensor is sufficient for the integrability
of an almost Kähler structure on a compact manifold. The answer turns out to be negative in
dimension 2n, n ≥ 3, by the examples provided in [3], but in dimension 4 the problem is still open,
as no examples of compact, non-Kähler, almost Kähler structures with J-invariant Ricci tensor are
known yet.

The examples of [3] have, in fact, a higher degree of resemblance to Kähler structures than just
the J-invariant Ricci tensor — they are almost Kähler manifolds satisfying the second curvature
condition of Gray [4]. In dimension 4, this condition just means that the Ricci tensor and the
positive Weyl tensor have the same symmetries as they have for a Kähler metric. A study of the
local and global geometry of this class of almost Kähler 4-manifolds has been recently started in [1].
In this note we complete the results of [1] in one direction, by proving the following:

Theorem 1 A compact, 4-dimensional, almost Kähler manifold satisfies the second Gray condi-
tion if and only if it is Kähler.

2 The second Gray condition in dimension 4

In [4], A. Gray considered almost Hermitian manifolds whose curvature tensor R has a certain
degree of resemblance to that of a Kähler manifold. The following identities arise naturally:
(G1) RXY ZW = RXY JZJW ;
(G2) RXY ZW − RJXJY ZW = RJXY JZW + RJXY ZJW ;
(G3) RXY ZW = RJXJY JZJW .
We shall call the identity Gi the ith Gray condition on the curvature. It is a simple application
of the first Bianchi identity to see that (G1) ⇒ (G2) ⇒ (G3). Also elementary is the fact that a
Kähler structure satisfies relation (G1). Following [4], if AK is the class of almost Kähler manifolds,
let AKi be the subclass of manifolds whose curvature satisfies the identity (Gi). Denoting by K
the class of Kähler manifolds, it is easily seen that the equality AK1 = K holds locally [5, 4]. The
examples in [3], multiplied by compact Kähler manifolds, show that even in the compact case, the
inclusion AK2 ⊃ K is strict in all dimensions 2n ≥ 6.
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Recall that for an almost Kähler 4-manifold (M, g, J,Ω) the conformal scalar curvature κ is
defined by κ = 3〈W+(Ω),Ω〉, where W+ is the positive Weyl tensor of (M, g) considered as a
traceless symmetric endomorphism of the vector bundle Λ+M of self-dual 2-forms. The local inner
product defined by g is extended to Λ+M and denoted by 〈., .〉, so that the induced norm is
half of the usual tensor norm on Λ1M ⊗ Λ1M . Let ∇ be the Levi-Civita connection of (M, g).
The covariant derivative of the fundamental form ∇Ω can be viewed as a section of the real vector
bundle underlying Λ1,0M⊗Λ2,0M , where Λp,qM denotes the vector bundle of complex (p, q)-forms.
Thus, locally, for any any real section φ of Λ2,0M of constant norm

√
2, we can write

∇Ω = a ⊗ φ − Ja ⊗ Jφ,(1)

where the locally defined 1-form a satisfies |∇Ω|2 = 4|a|2. The action of J extends by Rieman-
nian duality to the bundle of 1-forms by Ja(X) = −a(JX) and to the bundle of (2,0)-forms by
Jφ(X, Y ) = −φ(JX, Y ). As a simple consequence of the Weitzenböck formula for self-dual 2-forms
applied to the harmonic form Ω we get

κ = s + 6|a|2,(2)

where s is the scalar curvature of (M, g).
Supposing that the almost Kähler 4-manifold satisfies the second Gray condition, a careful

investigation of the second Bianchi identity eventually leads to:

Lemme 1 ([1, Propositions 1,2]) Let (M, g, J,Ω) be a 4-dimensional almost Kähler manifold which
satisfies the condition (G2). Then the smooth function κ−s is a non-negative constant. If moreover
κ − s is a positive constant — that is (M, g, J,Ω) is an almost Kähler, non-Kähler 4-manifold in
the class AK2 — then the traceless Ricci tensor Ric0 is given by:

Ric0 =
κ

4
[−gD + gD

⊥
],

where gD (resp. gD
⊥
) denotes the restriction of g to D = {X ∈ TM : ∇XΩ = 0} (resp. to the

orthogonal complement D⊥ = span{a, Ja}).
It follows from Lemma 1 that if (M, g, J,Ω) is an almost Kähler, non-Kähler 4-manifold in the class
AK2, then the Kähler nullity D of (g, J) is a well-defined 2-dimensional distribution on M . If we
denote by M̄ the manifold M with the reversed orientation, then we may consider the g-orthogonal
almost complex structure J̄ on M̄ , defined in the following manner: J̄ coincides with J on D and
is equal to −J on D⊥. Denote by Ω̄ the fundamental form of (g, J̄). Our main goal of this note is
to improve the following result proved in [1]:

Theorem 2 ([1, Theorem 1]) Let (M, g, J,Ω) be a closed 4-dimensional almost Kähler, non-Kähler
manifold satisfying the second Gray condition. Then (g, J̄ , Ω̄) is a Kähler structure, such that
(M̄, J̄) is a minimal properly elliptic surface with vanishing Euler characteristic.

3 Proof of Theorem 1

Let (M, g, J,Ω) be a closed 4-dimensional almost Kähler, non-Kähler manifold satisfying the second
Gray condition (G2). Then the conclusions of Lemma 1 and Theorem 2 above hold. To prove
Theorem 1 we have to deduce a contradiction.

Since the fundamental 2-forms Ω and Ω̄ are harmonic, so are the forms

α =
1
2
(
Ω − Ω̄

)
=

6
(κ − s)

a ∧ Ja , β =
1
2
(
Ω + Ω̄

)
= ∗α .(3)
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A representative for the real first Chern class of (M, J) is given (up to a constant 1
2π ) by the Ricci

form γ of the first canonical Hermitian connection ∇0
XY = ∇XY − 1

2J(∇XJ)(Y ) (see [7]). A short
computation of γ gives (see e.g. [6]):

γ(X, Y ) = R(Ω)(X, Y ) +
1
4
g(J(∇XJ), (∇Y J)),

where the Riemannian curvature R is considered as a symmetric endomorphism operating on the
bundle of 2-forms. Using the first Bianchi identity, it is easily seen that under the condition (G2)
the 2-form R(Ω) is given by

R(Ω)(X, Y ) =
(2κ + s)

12
Ω(X, Y ) + Ric0(JX, Y ).

Moreover, involving (1), (2) and Lemma 1, the above expression for γ eventually simplifies to
(see [1]):

γ = (s + κ)α − (κ − s)
3

β .(4)

Since (M̄, g, J̄ , Ω̄) is a Kähler surface, a representative for its real first Chern class is given (up to
a constant 1

2π ) by the Ricci form γ̄ = R(Ω̄) of (g, J̄ , Ω̄), i. e.

γ̄(X, Y ) =
s

4
Ω̄(X, Y ) + Ric0(J̄X, Y ) .

Then, according to Lemma 1 and the definition of J̄ , we obtain:

γ̄ = −(s + κ)α − (κ − s)β .(5)

Now, since (M̄, J̄) is a minimal properly elliptic surface by Theorem 1, we have

0 = c2
1(M̄) =

1
4π2

∫
M

γ̄ ∧ γ̄ =
1

2π2

∫
M

(s + κ)(κ − s)α ∧ β .

As κ − s is constant, the above equality together with (5) implies:
∫

M

γ̄ ∧ β = 0 .(6)

As (M̄, J̄) is a minimal properly elliptic surface of zero Euler characteristic, the base of the elliptic
fibration is of genus ≥ 2, and there are no fibers with singular reduction. The surface admits an
effective canonical divisor K, which by Kodaira’s formula is a sum of fibers. Now (6) reads

∫
K

β = 0 .

But K is a non-zero multiple of the class of the generic fiber, hence the integral of β vanishes on
each fiber. As β is a positive semi-definite form of type (1, 1) whose kernel is D⊥ = span{a, Ja}
(see (3)), this says that the tangent space of any irreducible component of a fiber is just D⊥. Thus
the complex line bundle D⊥ is tangent to the fibers everywhere. On the other hand, since the
only singular fibers of (M̄, J̄) are multiple fibres with smooth reduction, it follows that (M̄, J̄)
is obtained by logarithmic transformations from a locally trivial elliptic fibration. Moreover, by
replacing (M̄, J̄) with a finite covering if necessary, we may assume that (M̄, J̄) is obtained by
logarithmic transformations from a principle elliptic fibre bundle, i. e. an elliptic fibre bundle
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admitting a holomorphic action by translations on its fibres. Clearly this action is preserved by
logarithmic transformations, thus (M̄, J̄) has a non-vanishing holomorphic vector field tangent to
the fibres. This means that D⊥ is a holomorphically trivial sub-bundle of the tangent bundle
T of (M̄, J̄); in particular, using the splitting T = D ⊕ D⊥ and the definition of J̄ , we get
c1(M̄, J̄) = c1(M, J) (= c1(D)). But c1(M̄, J̄) and c1(M, J) are represented by 1

2π γ̄ and 1
2π γ,

respectively. Since α is a closed 2-form, it follows that∫
M

γ ∧ α =
∫

M

γ̄ ∧ α,

which, together with (3), (4) and (5), implies∫
M

(κ − s)Ω ∧ Ω = 0 .

This is a contradiction because κ−s is a positive constant according to Lemma 1 and the assumption
that (M, g, J,Ω) is not Kähler.
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