Geometric Quantization of complex Monge-Ampère operator for certain diffusion flows –

> Julien Keller (Aix-Marseille University)

2 Geometric flows

3 Quantum formalism and intrinsic geometric operators

4) Other related geometries

- *M* complex manifold : differentiable manifold with atlas whose transition functions are holomorphic \leftrightarrow integrable complex structure $J \in End(TM)$
- A Riemannian metric g on M is hermitian if the scalar product on TM is compatible with $J \Rightarrow$ a real (1,1)-form ω by $\omega(X, Y) = g(JX, Y)$, for all tangent vectors X, Y. Locally

$$\omega = \frac{\sqrt{-1}}{2} \sum_{i,j=1}^{n} h_{i\bar{j}} dz_i \wedge d\bar{z}_j$$

- If $d\omega = 0$, then ω is Kähler
- Example: the projective space endowed with Fubini-Study metric $\mathbb{CP}^n = \bigcup_{i=0}^n U_i, U_i \simeq \mathbb{C}^n, \omega_{FS|U_i} = \frac{\sqrt{-1}}{2} \partial \overline{\partial} \log \left(\sum_{l \neq i} \frac{|z_l|^2}{|z_l|^2} \right)$

- Consider *M* a Kähler manifold
- *M* complex manifold : differentiable manifold with atlas whose transition functions are holomorphic \leftrightarrow integrable complex structure $J \in End(TM)$
- A Riemannian metric g on M is hermitian if the scalar product on TM is compatible with $J \Rightarrow$ a real (1,1)-form ω by $\omega(X, Y) = g(JX, Y)$, for all tangent vectors X, Y. Locally

$$\omega = \frac{\sqrt{-1}}{2} \sum_{i,j=1}^{n} h_{i\bar{j}} dz_i \wedge d\bar{z}_j$$

- If $d\omega = 0$, then ω is Kähler
- Example: the projective space endowed with Fubini-Study metric $\mathbb{CP}^n = \bigcup_{i=0}^n U_i, U_i \simeq \mathbb{C}^n, \omega_{FS|U_i} = \frac{\sqrt{-1}}{2} \partial \overline{\partial} \log \left(\sum_{l \neq i} \frac{|z_l|^2}{|z_l|^2} \right)$

- *M* complex manifold : differentiable manifold with atlas whose transition functions are holomorphic \leftrightarrow integrable complex structure $J \in End(TM)$
- A Riemannian metric g on M is hermitian if the scalar product on TM is compatible with $J \Rightarrow$ a real (1, 1)-form ω by $\omega(X, Y) = g(JX, Y)$, for all tangent vectors X, Y. Locally

$$\omega = \frac{\sqrt{-1}}{2} \sum_{i,j=1}^n h_{i\bar{j}} dz_i \wedge d\bar{z}_j$$

- If $d\omega = 0$, then ω is Kähler
- Example: the projective space endowed with Fubini-Study metric $\mathbb{CP}^n = \bigcup_{i=0}^n U_i, U_i \simeq \mathbb{C}^n, \omega_{FS|U_i} = \frac{\sqrt{-1}}{2} \partial \overline{\partial} \log \left(\sum_{l \neq i} \frac{|z_l|^2}{|z_l|^2} \right)$

- *M* complex manifold : differentiable manifold with atlas whose transition functions are holomorphic \leftrightarrow integrable complex structure $J \in End(TM)$
- A Riemannian metric g on M is hermitian if the scalar product on TM is compatible with $J \Rightarrow$ a real (1, 1)-form ω by $\omega(X, Y) = g(JX, Y)$, for all tangent vectors X, Y. Locally

$$\omega = \frac{\sqrt{-1}}{2} \sum_{i,j=1}^{n} h_{i\bar{j}} dz_i \wedge d\bar{z}_j$$

- If $d\omega = 0$, then ω is Kähler
- Example: the projective space endowed with Fubini-Study metric $\mathbb{CP}^n = \bigcup_{i=0}^n U_i, U_i \simeq \mathbb{C}^n, \omega_{FS|U_i} = \frac{\sqrt{-1}}{2} \partial \overline{\partial} \log \left(\sum_{l \neq i} \frac{|z_l|^2}{|z_l|^2} \right)$

- *M* complex manifold : differentiable manifold with atlas whose transition functions are holomorphic \leftrightarrow integrable complex structure $J \in End(TM)$
- A Riemannian metric g on M is hermitian if the scalar product on TM is compatible with $J \Rightarrow$ a real (1,1)-form ω by $\omega(X, Y) = g(JX, Y)$, for all tangent vectors X, Y. Locally

$$\omega = \frac{\sqrt{-1}}{2} \sum_{i,j=1}^{n} h_{i\bar{j}} dz_i \wedge d\bar{z}_j$$

- If $d\omega = 0$, then ω is Kähler
- Example: the projective space endowed with Fubini-Study metric $\mathbb{CP}^n = \bigcup_{i=0}^n U_i, U_i \simeq \mathbb{C}^n, \omega_{FS|U_i} = \frac{\sqrt{-1}}{2} \partial \overline{\partial} \log \left(\sum_{l \neq i} \frac{|z_l|^2}{|z_l|^2} \right)$

M compact Kähler manifold, $n = \dim_{\mathbb{C}} M$, ω Kähler form. Kähler class $Ka(\omega) = \{\phi \in C^{\infty}(M, \mathbb{R}) : \omega + \sqrt{-1}\partial \overline{\partial}\phi > 0\}$

Theorem (Yau -1978)

Let Ω a smooth volume form with $\int_M \Omega = Vol([\omega])$. Then there exists a smooth solution ϕ to the Monge-Ampère equation

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = \Omega$$

8/57

M compact Kähler manifold, $n = \dim_{\mathbb{C}} M$, ω Kähler form. Kähler class $Ka(\omega) = \{\phi \in C^{\infty}(M, \mathbb{R}) : \omega + \sqrt{-1}\partial \overline{\partial} \phi > 0\}$

Theorem (Yau -1978)

Let Ω a smooth volume form with $\int_M \Omega = Vol([\omega])$. Then there exists a smooth solution ϕ to the Monge-Ampère equation

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = \Omega$$

 \hookrightarrow Non constructive proof. Transcendental solution

M compact Kähler manifold, $n = \dim_{\mathbb{C}} M$, ω Kähler form. Kähler class $Ka(\omega) = \{\phi \in C^{\infty}(M, \mathbb{R}) : \omega + \sqrt{-1}\partial \overline{\partial} \phi > 0\}$

Theorem (Yau -1978)

Let Ω a smooth volume form with $\int_M \Omega = Vol([\omega])$. Then there exists a smooth solution ϕ to the Monge-Ampère equation

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = \Omega$$

ightarrow Non constructive proof. Transcendental solution Ricci curvature of ω

$$Ric(\omega) = -\sqrt{-1}\partial\bar{\partial}\log(\omega^n)$$

"The Ricci Curvature as organizing principle" Scalar curvature $scal(\omega)$ = trace of the Ricci curvature Kähler metrics

Some consequences of Yau's theorem

A new physics (Supersymmetric String Theory) ↔ Ricci flat 3-folds

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Kähler metrics

Some consequences of Yau's theorem

sities on M

Smooth probabilities den- \leftrightarrow Space $Ka(\omega)$ of Kähler metrics compatible with the symplectic structure ω

Some consequences of Yau's theorem

sities on M

Rao-Fisher metric

 $g_F(x,y)|_{\mu} = \int_M \frac{x}{\mu} \frac{y}{\mu} \mu$

- Smooth probabilities den- \leftrightarrow Space $Ka(\omega)$ of Kähler metrics compatible with the symplectic structure ω
 - Calabi metric \leftrightarrow

$$g_C(\alpha,\beta)|_{\omega_{\phi}} = \int_M \Delta_{\omega_{\phi}} \alpha \Delta_{\omega_{\phi}} \beta \frac{\omega_{\phi}^n}{n!}$$

イロト イロト イヨト イヨト 一日

Some consequences of Yau's theorem

sities on M

Smooth probabilities den- \leftrightarrow Space $Ka(\omega)$ of Kähler metrics compatible with the symplectic structure ω

Rao-Fisher metric

 $g_F(x,y)|_{\mu} = \int_M \frac{x}{\mu} \frac{y}{\mu} \mu$

 \leftrightarrow Calabi metric

$$g_C(\alpha,\beta)_{|\omega_{\phi}} = \int_M \Delta_{\omega_{\phi}} \alpha \Delta_{\omega_{\phi}} \beta \frac{\omega_{\phi}^n}{n!}$$

 g_C has constant > 0 sectional curvature. Geodesic equation wrt g_C is an ODE

 \Rightarrow smoothness and uniqueness

イロト イポト イヨト イヨト 一日

Some consequences of Yau's theorem

sities on M

Smooth probabilities den- \leftrightarrow Space $Ka(\omega)$ of Kähler metrics compatible with the symplectic structure ω

Rao-Fisher metric $g_F(x,y)|_{\mu} = \int_M \frac{x}{\mu} \frac{y}{\mu} \mu$ \leftrightarrow Calabi metric

$$g_C(\alpha,\beta)_{|\omega_{\phi}} = \int_M \Delta_{\omega_{\phi}} \alpha \Delta_{\omega_{\phi}} \beta \frac{\omega_{\phi}^n}{n!}$$

 g_C has constant > 0 sectional curvature. Geodesic equation wrt g_C is an ODE

 \Rightarrow smoothness and uniqueness

 \rightarrow works in a more general setup (non compact, singular)

Kähler metrics

Radar detection: complex autoregressive model

For each echo of the waves sent, amplitude & phase are measured \Rightarrow Observation values associated to waves are complex vectors Z

イロト イポト イヨト イヨト 二日

Radar detection: complex autoregressive model

For each echo of the waves sent, amplitude & phase are measured

 \Rightarrow Observation values associated to waves are complex vectors Z

 \Rightarrow Associated (stationary) Gaussian process & covariance matrix $E[ZZ^*]$ that is (Toeplitz) hermitian > 0.

ightarrow Kähler metric (of Bergman type) $\sqrt{-1}\partial\bar{\partial}\log \det(E[ZZ^*])$, studied by Burbea-Rao (1984) and more recently by F. Barbaresco.

Radar detection: complex autoregressive model

For each echo of the waves sent, amplitude & phase are measured

 \Rightarrow Observation values associated to waves are complex vectors Z

 \Rightarrow Associated (stationary) Gaussian process & covariance matrix $E[ZZ^*]$ that is (Toeplitz) hermitian > 0.

 \Rightarrow Kähler metric (of Bergman type) $\sqrt{-1}\partial\bar{\partial}\log \det(E[ZZ^*])$, studied by Burbea-Rao (1984) and more recently by F. Barbaresco.

 \hookrightarrow Kähler metric with constant scalar curvature on bounded homogeneous domains

Radar detection: complex autoregressive model

For each echo of the waves sent, amplitude & phase are measured

 \Rightarrow Observation values associated to waves are complex vectors Z

 \Rightarrow Associated (stationary) Gaussian process & covariance matrix $E[ZZ^*]$ that is (Toeplitz) hermitian > 0.

 \Rightarrow Kähler metric (of Bergman type) $\sqrt{-1}\partial\bar{\partial}\log \det(E[ZZ^*])$, studied by Burbea-Rao (1984) and more recently by F. Barbaresco.

 \hookrightarrow Kähler metric with constant scalar curvature on bounded homogeneous domains

Open questions for target detection:

- define a good distance between two Toeplitz covariance matrices

↔ geodesic distance on Kähler metrics

- give a reasonable definition of the average of covariance matrices

 \leftrightarrow balancing/barycenter condition

Kähler metrics

Quantum Field Theory

Classical system: Phase space (M, ω) , observables $C^{\infty}(M, \mathbb{R})$ Quantized system: Hilbert space $\mathcal{H}(M, \omega)$, hermitian operators on $\mathcal{H}(M, \omega)$

Quantum phase space $\mathbb{P}(\mathcal{H})$: the Fubini-Study metric provides the means of measuring information in quantum mechanics

Quantum Field Theory

Classical system: Phase space (M, ω) , observables $C^{\infty}(M, \mathbb{R})$ Quantized system: Hilbert space $\mathcal{H}(M, \omega)$, hermitian operators on $\mathcal{H}(M, \omega)$

Quantum phase space $\mathbb{P}(\mathcal{H})$: the Fubini-Study metric provides the means of measuring information in quantum mechanics

Statistical manifold $\mathcal{P}_n^* = \{p : \{x_1, ..., x_n\} \to \mathbb{R}, p(x_i) > 0, \sum_i p(x_i) = 1\}$ of non-vanishing probability distributions *p* on a discrete set $\{x_1, ..., x_n\}$. Exponential representation for the tangent space at $p \in \mathcal{P}_n^*$:

$$T_p \mathcal{P}_n^* = \{ u = (u_1, \dots, u_n) \in \mathbb{R}^n | u_1 p(x_1) + \dots + u_n p(x_n) = 0 \}$$

<ロト < 四ト < 三ト < 三ト = 三 = -

Quantum Field Theory

Classical system: Phase space (M, ω) , observables $C^{\infty}(M, \mathbb{R})$ Quantized system: Hilbert space $\mathcal{H}(M, \omega)$, hermitian operators on $\mathcal{H}(M, \omega)$

Quantum phase space $\mathbb{P}(\mathcal{H})$: the Fubini-Study metric provides the means of measuring information in quantum mechanics

Statistical manifold $\mathcal{P}_n^* = \{p : \{x_1, ..., x_n\} \to \mathbb{R}, p(x_i) > 0, \sum_i p(x_i) = 1\}$ of non-vanishing probability distributions *p* on a discrete set $\{x_1, ..., x_n\}$. Exponential representation for the tangent space at $p \in \mathcal{P}_n^*$:

$$T_p \mathcal{P}_n^{\star} = \{ u = (u_1, \dots, u_n) \in \mathbb{R}^n | u_1 p(x_1) + \dots + u_n p(x_n) = 0 \}$$

 $\Rightarrow g_F$ Fisher metric, exponential and mixture connections $\nabla^{(e)}, \nabla^{(m)}$ that are dually flat \Rightarrow Kähler structure ω_F for $T\mathcal{P}_n^*$.

▲□▶▲@▶★≧▶★≧▶ 差 の

Quantum Field Theory

Classical system: Phase space (M, ω) , observables $C^{\infty}(M, \mathbb{R})$ Quantized system: Hilbert space $\mathcal{H}(M, \omega)$, hermitian operators on $\mathcal{H}(M, \omega)$

Quantum phase space $\mathbb{P}(\mathcal{H})$: the Fubini-Study metric provides the means of measuring information in quantum mechanics

Statistical manifold $\mathcal{P}_n^* = \{p : \{x_1, ..., x_n\} \to \mathbb{R}, p(x_i) > 0, \sum_i p(x_i) = 1\}$ of non-vanishing probability distributions *p* on a discrete set $\{x_1, ..., x_n\}$. Exponential representation for the tangent space at $p \in \mathcal{P}_n^*$:

$$T_p \mathcal{P}_n^* = \{ u = (u_1, ..., u_n) \in \mathbb{R}^n | u_1 p(x_1) + ... + u_n p(x_n) = 0 \}$$

 $ightarrow g_F$ Fisher metric, exponential and mixture connections $\nabla^{(e)}, \nabla^{(m)}$ that are dually flat \Rightarrow Kähler structure ω_F for $T\mathcal{P}_n^*$. Define $\gamma : (T\mathcal{P}_n^*, \omega_F) \rightarrow \{[z_1, ..., z_n] | \forall i, z_i \neq 0\} \subset (\mathbb{CP}^n, \omega_{FS})$ universal covering map

 \Rightarrow local isomorphism of Kähler structures.

2 Geometric flows

3 Quantum formalism and intrinsic geometric operators

Geometric flows

Deformation of Kähler metrics

Intrinsic geometric flows in Riemannian geometry have been used for a few decades (Yamabe flow, Ricci flow, Calabi flow...) for theoretical purposes.

Intrinsic geometric flows in Riemannian geometry have been used for a few decades (Yamabe flow, Ricci flow, Calabi flow...) for theoretical purposes. New applications in recent years

• Ricci flow in (real) dimension 2: 3D surface shape analysis (shape matching, WP metrics..)

Intrinsic geometric flows in Riemannian geometry have been used for a few decades (Yamabe flow, Ricci flow, Calabi flow...) for theoretical purposes. New applications in recent years

イロト イポト イヨト イヨト 二日

• Ricci flow in (real) dimension 2: 3D surface shape analysis (shape matching, WP metrics..)

 \Rightarrow cf. works of X. D. Gu (Stony Brook), G. Zou (Wayne State University), E. Sharon & D. Mumford (Brown University), etc.

Intrinsic geometric flows in Riemannian geometry have been used for a few decades (Yamabe flow, Ricci flow, Calabi flow...) for theoretical purposes. New applications in recent years

• Ricci flow in (real) dimension 2: 3D surface shape analysis (shape matching, WP metrics..)

• Ricci/Calabi flow in higher dimension: F. Barbaresco was using Calabi flow in the CAR model

Intrinsic geometric flows in Riemannian geometry have been used for a few decades (Yamabe flow, Ricci flow, Calabi flow...) for theoretical purposes. New applications in recent years

• Ricci flow in (real) dimension 2: 3D surface shape analysis (shape matching, WP metrics..)

• Ricci/Calabi flow in higher dimension: F. Barbaresco was using Calabi flow in the CAR model

(Normalized) Kähler-Ricci flow Kähler Calabi flow

$$\frac{\partial \omega_t}{\partial t} = -Ric(\omega_t) + \lambda \omega_t, \quad \lambda \in \mathbb{R}$$
$$\frac{\partial \phi_t}{\partial t} = scal(\omega + \sqrt{-1}\partial \bar{\partial} \phi_t) - s$$

These flows may develop singularities !

Perelman's functional

Boltzmann-Shannon entropy

$$\mathcal{E}_{BS} = -\int_M u \log u \, dV$$

with $u(t) = e^{-f(t)}$ probability density of a particle evolving under Brownian motion $\Box^* u = 0$. Fisher information functional, the so-called *Perelman's functional*

$$\mathcal{F}(g,f) = \int_{M} (scal(g) + |\nabla f|^2) e^{-f} dV$$

since \mathcal{F} is the rate of dissipation of entropy:

$$-\frac{d\mathcal{E}_{BS}}{dt}=\mathcal{F}(g,f)$$

イロト イポト イヨト イヨト 二日

Perelman's functional

Boltzmann-Shannon entropy

$$\mathcal{E}_{BS} = -\int_M u \log u \, dV$$

with $u(t) = e^{-f(t)}$ probability density of a particle evolving under Brownian motion $\Box^* u = 0$. Fisher information functional, the so-called *Perelman's functional*

$$\mathcal{F}(g,f) = \int_{M} (scal(g) + |\nabla f|^2) e^{-f} dV$$

since \mathcal{F} is the rate of dissipation of entropy:

$$-\frac{d\mathcal{E}_{BS}}{dt}=\mathcal{F}(g,f)$$

Ricci flow is the gradient flow of \mathcal{F} .

→ Important on Riemannian manifold (Poincaré's conjecture,...) but also for Kähler manifold (Hamilton-Tian's conjecture)

2 Geometric flows

Berezin Quantization and density of Bergman space

 $Ka(\omega) = \{\phi \in C^{\infty}(M, \mathbb{R}) : \omega + \sqrt{-1}\partial\bar{\partial}\phi > 0\} \infty$ -dim Riemannian space. Fix k >> 0, Planck constant h = 1/k, $[\omega] = c_1(L)$ integral/rational class. Space of Bergman metrics

 $\mathcal{B}_k = GL(N_k, \mathbb{C})/U(N_k)$

set of all hermitian metrics on $\mathcal{H}_k = H^0(M, L^{\otimes k})$,

 $N_k = \dim \mathcal{H}_k = k^n \int_M \omega^n + O(k^{n-1})$ relating dimension of quantum state to the volume of phase state (Riemann-Roch)

Berezin Quantization and density of Bergman space

 $Ka(\omega) = \{\phi \in C^{\infty}(M, \mathbb{R}) : \omega + \sqrt{-1}\partial\bar{\partial}\phi > 0\} \infty$ -dim Riemannian space. Fix k >> 0, Planck constant h = 1/k, $[\omega] = c_1(L)$ integral/rational class. Space of Bergman metrics

 $\mathcal{B}_k = GL(N_k, \mathbb{C})/U(N_k)$

set of all hermitian metrics on $\mathcal{H}_k = H^0(M, L^{\otimes k})$,

 $N_k = \dim \mathcal{H}_k = k^n \int_M \omega^n + O(k^{n-1})$ relating dimension of quantum state to the volume of phase state (Riemann-Roch)

Dequantization process: the injective 'Fubini-Study' map

 $FS_k: \mathcal{B}_k \to Ka(\omega)$

given by $FS_k(H) = \frac{1}{k} \log(\sum_{i=1}^{N_k} |s_i^H|^2)$ where (s_i^H) is any *H*-orthonormal basis of holomorphic sections of $H^0(M, L^{\otimes k})$

Theorem (Tian - 1988, Bouche - 1990, ..)

The union of images $FS_k(\mathcal{B}_k)$ for k >> 0 is dense in C^{∞} -topology in $Ka(\omega)$.

A canonical approach to the Monge-Ampère equation

Building on ideas of Geometric Invariant Theory and the notion of moment map (J-M. Souriau), S.K. Donaldson introduced a dynamical system on \mathcal{B}_k that depends only on Ω , volume form:

$$T_k:\mathcal{B}_k\to\mathcal{B}_k$$

has a unique attractive point, called a balanced metric H_k^{bal} . It is the zero of a certain moment map (balancing condition \leftrightarrow center of mass is 0)

A canonical approach to the Monge-Ampère equation

Building on ideas of Geometric Invariant Theory and the notion of moment map (J-M. Souriau), S.K. Donaldson introduced a dynamical system on \mathcal{B}_k that depends only on Ω , volume form:

$$T_k: \mathcal{B}_k \to \mathcal{B}_k$$

has a unique attractive point, called a balanced metric H_k^{bal} . It is the zero of a certain moment map (balancing condition \leftrightarrow center of mass is 0)

Theorem

Let ω_k^{bal} be the curvature of $FS_k(H_k^{bal})$. Then, for $k \to +\infty$, $\omega_k^{bal} \to \omega_{\infty}$

such that

$$\omega_\infty^n=\Omega$$

An algorithm

- Fix k >> 0. Find points p_s ∈ M over the manifold (using charts, Monte-Carlo method, etc.)
- **2** Give Ω volume form, compute the weights $\Omega(p_s)$.
- Solution Fix the space of holomorphic sections $H^0(L^{\otimes k})$ and a basis (s_i) .
- Fix a random invertible hermitian matrix $H_{[0]} \in \mathcal{B}_k$. r := 0.
- Iteration of the T_k map:
 - Compute the inverse $H_{[r]}^{-1}$.
 - 2 Compute

$$(H_{[r+1]})_{\alpha,\bar{\beta}} = \sum_{s} \frac{s_{\alpha}(p_s)\bar{s}_{\bar{\beta}}(p_s)}{\sum_{i,j}(H_{[r]}^{-1})_{i\bar{j}}s_i(p_s)\bar{s}_{\bar{j}}(p_s)}\Omega(p_s).$$

If $H_{[r+1]} \simeq H_{[r]}$, stop iteration otherwise r := r + 1 and iterate. (a) Return $H_{[r+1]}$.

37/57

• Robust algorithm: generalization to non smooth volume forms – more to come...

- Robust algorithm: generalization to non smooth volume forms more to come...
- Fix k and \mathcal{B}_k . Convergence speed: exponential in r parameter.

- Robust algorithm: generalization to non smooth volume forms more to come...
- Fix k and \mathcal{B}_k . Convergence speed: exponential in r parameter.
- Balanced metric close to the solution of the Monge-Ampère equation: error ~ $O(1/k^3)$
- One can do a Newton method to get closer to the solution to the M-A equation:

$$\min_{\omega_k \in \mathcal{B}_k} \|\omega_k - \omega_\infty\|_{C^r(\omega_\infty)} = O(1/k^{\epsilon \log(k)^n})$$

Bergman spaces are getting exponentially close to $Ka(\omega)$.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

- Robust algorithm: generalization to non smooth volume forms more to come...
- Fix k and \mathcal{B}_k . Convergence speed: exponential in r parameter.
- Balanced metric close to the solution of the Monge-Ampère equation: error ~ $O(1/k^3)$
- One can do a Newton method to get closer to the solution to the M-A equation:

$$\min_{\omega_k \in \mathcal{B}_k} \|\omega_k - \omega_\infty\|_{C^r(\omega_\infty)} = O(1/k^{\epsilon \log(k)^n})$$

Bergman spaces are getting exponentially close to $Ka(\omega)$.

• For the proofs, the key ingredient is the asymptotic behavior of the Bergman kernel (kernel of the L^2 projection onto $H^0(M, L^{\otimes k})$) and to consider coercive energy functionals

Extending the algorithm to other special metrics

• Kähler-Einstein metrics

$$Ric(\omega) = \lambda \omega$$

• Kähler metrics with constant scalar curvature

$$Scal(\omega) = cst$$

Kähler-Ricci solitons

$$Ric(\omega) + L_X\omega = \lambda\omega$$

• Special metrics on bundles (solution to Vortex equation, Hermitian-Yang-Mills equation)

$$\sqrt{-1}\Lambda_{\omega}F_{h_{E}} = cst \times Id_{E}$$
$$\sqrt{-1}\Lambda_{\omega}F_{h_{E}} + \phi \otimes \phi_{h_{E}}^{*} = cst \times Id_{E}$$

- Extremal toric Kähler metrics (critical points of the Calabi functional)
- Weil-Petersson metrics (Lukic-Keller)

.

General principle:

• Each of the metrics above lead to a change of the moment map setting associated to $SL(H^0(M, L^{\otimes k})) = SL(N_k, \mathbb{C})$ action.

General principle:

- Each of the metrics above lead to a change of the moment map setting associated to $SL(H^0(M, L^{\otimes k})) = SL(N_k, \mathbb{C})$ action.
- Each moment map induces a gradient flow in finite dimension that converges towards an infinite dimensional flow on Ka(ω) when k → +∞

General principle:

- Each of the metrics above lead to a change of the moment map setting associated to $SL(H^0(M, L^{\otimes k})) = SL(N_k, \mathbb{C})$ action.
- Each moment map induces a gradient flow in finite dimension that converges towards an infinite dimensional flow on Ka(ω) when k → +∞

For instance this principle can be applied to the Calabi Flow, the Kähler-Ricci flow (Fine, Berman, Cao-Keller). Also, new geometric flows appear !

General principle:

- Each of the metrics above lead to a change of the moment map setting associated to $SL(H^0(M, L^{\otimes k})) = SL(N_k, \mathbb{C})$ action.
- Each moment map induces a gradient flow in finite dimension that converges towards an infinite dimensional flow on Ka(ω) when k → +∞

For instance this principle can be applied to the Calabi Flow, the Kähler-Ricci flow (Fine, Berman, Cao-Keller). Also, new geometric flows appear !

Moreover:

- Ricci operator on $Ka(\omega)$ can be quantized (Berman)
- Laplacian & Lichnerowicz operators +spectrum can be quantized (Fine)

2 Geometric flows

3 Quantum formalism and intrinsic geometric operators

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Toric geometry : from complex to real geometry

 M^n Kähler manifold with effective action of the real *n*-dimensional torus $T_n = (S^1)^n$ preserving Kähler form and complex structure Integral polytope *P* in \mathbb{R}^n : the Delzant convex hull of a finite set of points in the lattice \mathbb{Z}^n , theorem $P = \bigcap_{i=1}^d \{y \in \mathbb{R}^n, l_i(y) \ge 0\}, l_i$ affine linear

Toric geometry : from complex to real geometry

 M^n Kähler manifold with effective action of the real *n*-dimensional torus $T_n = (S^1)^n$ preserving Kähler form and complex structure

 ϕ torus invariant Kähler potential in complex coordinates on *M* Integral polytope *P* in \mathbb{R}^n : the Delzant convex hull of a finite set of points in the lattice \mathbb{Z}^n , theorem $P = \bigcap_{i=1}^d \{y \in \mathbb{R}^n, l_i(y) \ge 0\}, l_i$ affine linear Legendre $\sum_{i=1}^d l_i \log(l_i) + v$ strictly convex \leftrightarrow function in symplectic transform coordinates on $P^\circ, v \in C^\infty(P, \mathbb{R})$

イロト イポト イヨト イヨト 二日

Toric geometry : from complex to real geometry

 M^n Kähler manifold with effective action of the real *n*-dimensional torus $T_n = (S^1)^n$ preserving Kähler form and complex structure

 ϕ torus invariant Kähler potential in complex coordinates on M

 $(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = \Omega$

Complex Monge-Ampère equation

Integral polytope *P* in \mathbb{R}^n : the Delzant convex hull of a finite set of points in the lattice \mathbb{Z}^n , \leftrightarrow $P = \bigcap_{i=1}^{d} \{ y \in \mathbb{R}^{n}, l_{i}(y) \ge 0 \}, l_{i}$ theorem affine linear Legendre $\sum_{i=1}^{d} l_i \log(l_i) + v$ strictly convex function in symplectic \leftrightarrow transform coordinates on P° , $v \in C^{\infty}(P, \mathbb{R})$ $\det(\nabla^2 \psi) = \Omega_{\mathbb{R}}$ with optimal transport map: \leftrightarrow $\nabla \psi : \mathbb{R}^n \tilde{\rightarrow} P^\circ$ wrt Lebesgue measure on P

イロト イロト イヨト イヨト 一日

Some iterations for constructing an extremal-balanced metric on an Hirzebruch surface

(we plot the scalar defect over the polytope (yellow means < 1/100)

Other related geometries

Non compact Kähler manifolds

Let $D \subset \mathbb{C}^n$ (strictly) pseudoconvex bounded domain.

Non compact Kähler manifolds

Let $D \subset \mathbb{C}^n$ (strictly) pseudoconvex bounded domain.

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = f(z,\phi)\omega^n$$
 on D , $\phi = g$ on ∂D

with $f \in C^0(\overline{D} \times \mathbb{R})$, $f(z, \cdot)$ non-decreasing, $g \in C^0(\partial D)$. Then there exists a C^0 solution ϕ (viscosity solution)

Cheng-Yau (1980): $f = e^{(n+1)\phi}$, $g = \infty \hookrightarrow \exists$ complete Kähler-Einstein metric.

イロト イロト イヨト イヨト 三日

Non compact Kähler manifolds

Let $D \subset \mathbb{C}^n$ (strictly) pseudoconvex bounded domain.

$$(\omega + \sqrt{-1}\partial\bar{\partial}\phi)^n = f(z,\phi)\omega^n$$
 on D , $\phi = g$ on ∂D

with $f \in C^0(\overline{D} \times \mathbb{R})$, $f(z, \cdot)$ non-decreasing, $g \in C^0(\partial D)$. Then there exists a C^0 solution ϕ (viscosity solution) Cheng-Yau (1980): $f = e^{(n+1)\phi}$, $g = \infty \hookrightarrow \exists$ complete Kähler-Einstein metric.

Theorem (Engliš - 2000)

Fix ϕ locally smooth bounded strictly psh on D. The Bergman kernel of $L^2_{hol}(D)$ with weight $e^{-k\phi}$ dvol has the following expansion for $k \to +\infty$

$$\mathbf{K}_{k} = k^{n} e^{k\phi} \frac{\det(\phi_{i\bar{j}})}{d\mathrm{vol}} + O(k^{n-1})$$

Other related geometries

Non compact Kähler manifolds

Definition

 ϕ is said to be (k, dvol)-balanced if $K_k e^{-k\phi} = Cst$.

Non compact Kähler manifolds

Definition

 ϕ is said to be (k, dvol)-balanced if $K_k e^{-k\phi} = Cst$.

Conjecture

 $D \subset \mathbb{C}^n$ pseudoconvex bounded domain.

- Existence of (k, dvol)-balanced psh function $\phi_k^{bal} \in C^0(D)$ for $k \gg 0$
- Convergence of ϕ_k^{bal} towards the solution of the Monge-Ampère equation
- Donaldson's algorithm can be extended

The conjecture is partially checked for homogeneous bounded domains of \mathbb{C}^n .

Thank you for your attention

julien.keller@univ-amu.fr

(日)

57/57