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Kähler metrics

Consider M a Kähler manifold

M complex manifold : differentiable manifold with atlas whose transition
functions are holomorphic↔ integrable complex structure J ∈ End(TM)
A Riemannian metric g on M is hermitian if the scalar product on TM is
compatible with J ⇒ a real (1,1)-form ω by ω(X,Y) = g(JX,Y), for all
tangent vectors X,Y . Locally

ω =
√
−1
2

n

∑
i,j=1

hījdzi ∧ dz̄j

and ∀p ∈ M, hīj(p) is positive definite hermitian matrix

If dω = 0, then ω is Kähler

Example: the projective space endowed with Fubini-Study metric
CPn = ⋃n

i=0 Ui, Ui ≃ Cn, ωFS∣Ui =
√
−1
2 ∂∂̄ log (∑l≠i

∣zl∣2
∣zi∣2 )
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Kähler metrics

M compact Kähler manifold, n = dimC M, ω Kähler form.
Kähler class Ka(ω) = {φ ∈ C∞(M,R) ∶ ω +

√
−1∂∂̄φ > 0}

Theorem (Yau -1978)

Let Ω a smooth volume form with ∫M Ω = Vol([ω]).
Then there exists a smooth solution φ to the
Monge-Ampère equation

(ω +
√
−1∂∂̄φ)n = Ω

↪ Non constructive proof. Transcendental solution
Ricci curvature of ω

Ric(ω) = −
√
−1∂∂̄ log(ωn)

“The Ricci Curvature as organizing principle”
Scalar curvature scal(ω) = trace of the Ricci curvature
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Kähler metrics

Some consequences of Yau’s theorem

A new physics (Supersymmetric String Theory)↔ Ricci flat 3-folds

11 / 57



Kähler metrics

Some consequences of Yau’s theorem

Smooth probabilities den-
sities on M

←→ Space Ka(ω) of Kähler metrics
compatible with the symplectic
structure ω

Rao-Fisher metric ←→ Calabi metric

gF(x, y)∣µ = ∫M
x
µ

y
µµ gC(α,β)∣ωφ

= ∫M ∆ωφ
α∆ωφ

β
ωn
φ

n!

gC has constant > 0 sectional curvature.
Geodesic equation wrt gC is an ODE

⇒ smoothness and uniqueness

↪ works in a more general setup (non compact, singular)
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Kähler metrics

Radar detection: complex autoregressive model

For each echo of the waves sent, amplitude & phase are measured
⇒ Observation values associated to waves are complex vectors Z

⇒ Associated (stationary) Gaussian process & covariance matrix E[ZZ∗] that
is (Toeplitz) hermitian > 0.
↪ Kähler metric (of Bergman type)

√
−1∂∂̄ log det(E[ZZ∗]), studied by

Burbea-Rao (1984) and more recently by F. Barbaresco.
↪ Kähler metric with constant scalar curvature on bounded homogeneous
domains

Open questions for target detection:
– define a good distance between two Toeplitz covariance matrices

↔ geodesic distance on Kähler metrics
– give a reasonable definition of the average of covariance matrices

↔ balancing/barycenter condition
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Kähler metrics

Quantum Field Theory

Classical system: Phase space (M, ω), observables C∞(M,R)
Quantized system: Hilbert spaceH(M, ω), hermitian operators onH(M, ω)

Quantum phase space P(H): the Fubini-Study metric provides the means of
measuring information in quantum mechanics

Statistical manifold P⋆n = {p ∶ {x1, ..., xn}→ R,p(xi) > 0,∑i p(xi) = 1} of
non-vanishing probability distributions p on a discrete set {x1, ..., xn}.
Exponential representation for the tangent space at p ∈ P⋆n :

TpP⋆n = {u = (u1, ...,un) ∈ Rn∣u1p(x1) + ... + unp(xn) = 0}

↪ gF Fisher metric, exponential and mixture connections ∇(e),∇(m) that are
dually flat⇒ Kähler structure ωF for TP⋆n .
Define γ ∶ (TP⋆n , ωF)→ {[z1, .., zn] ∣∀i, zi ≠ 0} ⊂ (CPn, ωFS) universal
covering map
⇒ local isomorphism of Kähler structures.
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Geometric flows
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Geometric flows

Deformation of Kähler metrics

Intrinsic geometric flows in Riemannian geometry have been used for a few
decades (Yamabe flow, Ricci flow, Calabi flow...) for theoretical purposes.

New applications in recent years

● Ricci flow in (real) dimension 2: 3D surface shape analysis (shape
matching, WP metrics..)
↪ cf. works of X. D. Gu (Stony Brook), G. Zou (Wayne State
University), E. Sharon & D. Mumford (Brown University), etc.
● Ricci/Calabi flow in higher dimension: F. Barbaresco was using
Calabi flow in the CAR model

(Normalized) Kähler-Ricci flow ∂ωt
∂t = −Ric(ωt) + λωt, λ ∈ R

Kähler Calabi flow ∂φt
∂t = scal(ω +

√
−1∂∂̄φt) − s

�

These flows may develop singularities !
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Geometric flows

Perelman’s functional

Boltzmann-Shannon entropy

EBS = −∫
M

u log u dV

with u(t) = e−f (t) probability density of a particle evolving under Brownian
motion ◻∗u = 0. Fisher information functional, the so-called Perelman’s
functional

F(g, f ) = ∫
M
(scal(g) + ∣∇f ∣2)e−f dV

since F is the rate of dissipation of entropy:

−dEBS

dt
= F(g, f )

Ricci flow is the gradient flow of F .
↪ Important on Riemannian manifold (Poincaré’s conjecture,...) but also for
Kähler manifold (Hamilton-Tian’s conjecture)
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Quantum formalism and intrinsic geometric operators

Berezin Quantization and density of Bergman space

Ka(ω) = {φ ∈ C∞(M,R) ∶ ω +
√
−1∂∂̄φ > 0}∞-dim Riemannian space.

Fix k >> 0, Planck constant h̵ = 1/k, [ω] = c1(L) integral/rational class.
Space of Bergman metrics

Bk = GL(Nk,C)/U(Nk)

set of all hermitian metrics onHk = H0(M,L⊗k),
Nk = dimHk = kn ∫M ω

n +O(kn−1) relating dimension of quantum state to the
volume of phase state (Riemann-Roch)

Dequantization process: the injective ‘Fubini-Study’ map

FSk ∶ Bk → Ka(ω)

given by FSk(H) = 1
k log(∑Nk

i=1 ∣s
H
i ∣2) where (sH

i ) is any H-orthonormal basis
of holomorphic sections of H0(M,L⊗k)

Theorem (Tian - 1988, Bouche - 1990, ..)

The union of images FSk(Bk) for k >> 0 is dense in C∞-topology in Ka(ω).
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Quantum formalism and intrinsic geometric operators

A canonical approach to the Monge-Ampère equation

Building on ideas of Geometric Invariant Theory and the notion of moment
map (J-M. Souriau), S.K. Donaldson introduced a dynamical system on Bk
that depends only on Ω, volume form:

Tk ∶ Bk → Bk

has a unique attractive point, called a balanced metric Hbal
k . It is the zero of a

certain moment map (balancing condition↔ center of mass is 0)

Theorem

Let ωbal
k be the curvature of FSk(Hbal

k ). Then, for
k → +∞,

ωbal
k → ω∞

such that
ωn
∞ = Ω.
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Quantum formalism and intrinsic geometric operators

An algorithm

1 Fix k >> 0. Find points ps ∈ M over the manifold (using charts,
Monte-Carlo method, etc.)

2 Give Ω volume form, compute the weights Ω(ps).
3 Fix the space of holomorphic sections H0(L⊗k) and a basis (si).
4 Fix a random invertible hermitian matrix H[0] ∈ Bk. r ∶= 0.
5 Iteration of the Tk map:

1 Compute the inverse H−1
[r].

2 Compute

(H[r+1])α,β̄ =∑
s

sα(ps)s̄β̄(ps)
∑i,j(H−1

[r])ījsi(ps)s̄̄j(ps)
Ω(ps).

If H[r+1] ≃ H[r], stop iteration otherwise r ∶= r + 1 and iterate.
6 Return H[r+1].
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Quantum formalism and intrinsic geometric operators

Let us do some remarks:

Robust algorithm: generalization to non smooth volume forms – more to
come...

Fix k and Bk. Convergence speed: exponential in r parameter.

Balanced metric close to the solution of the Monge-Ampère equation:
error ∼ O(1/k3)
One can do a Newton method to get closer to the solution to the M-A
equation:

min
ωk∈Bk

∥ωk − ω∞∥Cr(ω∞) = O(1/kε log(k)n
)

Bergman spaces are getting exponentially close to Ka(ω).

For the proofs, the key ingredient is the asymptotic behavior of the
Bergman kernel (kernel of the L2 projection onto H0(M,L⊗k)) and to
consider coercive energy functionals
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Quantum formalism and intrinsic geometric operators

Extending the algorithm to other special metrics

Kähler-Einstein metrics
Ric(ω) = λω

Kähler metrics with constant scalar curvature

Scal(ω) = cst

Kähler-Ricci solitons
Ric(ω) + LXω = λω

Special metrics on bundles (solution to Vortex equation,
Hermitian-Yang-Mills equation)

√
−1ΛωFhE = cst × IdE

√
−1ΛωFhE + φ⊗ φ

∗
hE
= cst × IdE

Extremal toric Kähler metrics (critical points of the Calabi functional)
Weil-Petersson metrics (Lukic-Keller)
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Quantum formalism and intrinsic geometric operators

Extending the algorithm to geometric flows and operators

General principle:

Each of the metrics above lead to a change of the moment map setting
associated to SL(H0(M,L⊗k)) = SL(Nk,C) action.

Each moment map induces a gradient flow in finite dimension that
converges towards an infinite dimensional flow on Ka(ω) when k → +∞

For instance this principle can be applied to the Calabi Flow, the Kähler-Ricci
flow (Fine, Berman, Cao-Keller). Also, new geometric flows appear !

Moreover:

Ricci operator on Ka(ω) can be quantized (Berman)

Laplacian & Lichnerowicz operators +spectrum can be quantized (Fine)
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Other related geometries
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Other related geometries

Toric geometry : from complex to real geometry

Mn Kähler manifold with effective
action of the real n-dimensional
torus Tn = (S1)n preserving Kähler
form and complex structure

Delzant
↔

theorem

Integral polytope P in Rn: the
convex hull of a finite set of
points in the lattice Zn,
P = ⋂d

i=1{y ∈ Rn, li(y) ≥ 0}, li
affine linear

φ torus invariant Kähler potential
in complex coordinates on M

Legendre
↔

transform

∑d
i=1li log(li) + v strictly convex

function in symplectic
coordinates on P○, v ∈ C∞(P,R)

(ω +
√
−1∂∂̄φ)n = Ω

Complex Monge-Ampère
equation

↔
det(∇2ψ) = ΩR
with optimal transport map:
∇ψ ∶ Rn →̃P○ wrt Lebesgue
measure on P
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Other related geometries

r = 1 r = 5 r = 10 r = 25

Some iterations for constructing an extremal-balanced metric on an
Hirzebruch surface

(we plot the scalar defect over the polytope (yellow means < 1/100)
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Other related geometries

Non compact Kähler manifolds

Let D ⊂ Cn (strictly) pseudoconvex bounded domain.

(ω +
√
−1∂∂̄φ)n = f (z, φ)ωn on D, φ = g on ∂D

with f ∈ C0(D̄ ×R), f (z, ⋅) non-decreasing, g ∈ C0(∂D). Then there exists a
C0 solution φ (viscosity solution)
Cheng-Yau (1980): f = e(n+1)φ, g =∞ ↪ ∃ complete Kähler-Einstein metric.

Theorem (Engliš - 2000)
Fix φ locally smooth bounded strictly psh on D. The Bergman kernel of
L2

hol(D) with weight e−kφdvol has the following expansion for k → +∞

Kk = knekφ det(φīj)
dvol

+O(kn−1)
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Other related geometries

Non compact Kähler manifolds

Definition

φ is said to be (k,dvol)-balanced if Kke−kφ = Cst.

Conjecture

D ⊂ Cn pseudoconvex bounded domain.

Existence of (k,dvol)-balanced psh function φbal
k ∈ C0(D) for k >> 0

Convergence of φbal
k towards the solution of the Monge-Ampère equation

Donaldson’s algorithm can be extended

The conjecture is partially checked for homogeneous bounded domains of Cn.
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Other related geometries

Thank you for your attention

julien.keller@univ-amu.fr
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