
Geometric Quantization

of Complex Monge-Ampère Operator
for Certain Diffusion Flows

Julien Keller

Laboratoire d’Analyse Topologie et Probabilités, C.M.I, Aix-Marseille Université
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In the 40’s, C.R. Rao considered probability distributions for a statistical model
as the points of a Riemannian smooth manifold, where the considered Rieman-
nian metric is the so-called Fisher metric. When extended to the complex projec-
tive space, this metric is actually the Fubini-Study metric. For certain models,
it is quite remarkable that one actually needs to consider data with complex
values. For instance, for radars-sensors, one measures simultaneously the am-
plitude and phase of the electromagnetic vector. Thus the observation value of
each radar cell is a vector Z ∈ C

N where N is the number of emitted waves.
In the complex autoregressive model (C.A.R) developed by F. Barbaresco [1, 2],
one considers Z as a realization of stationary Gaussian process which provides
the covariance matrix E[ZZ∗] that is hermitian definite positive and Toeplitz if
the signal is stationary. In this context, the hermitian and the Kähler geometry
are natural settings (that actually enjoy certain similarities, see [3]) to provide
adapted mathematical tools. For the C.A.R model, the entropy of the signal is
given by − log det(E[ZZ∗]) which is actually the Kähler potential of the Fisher
metric information. Then, it is natural to wonder if the techniques developed by
complex geometers during the last decades can bring a new insight on the target
detection problem or in image processing.

For example certain natural geometric evolution flows for Kähler metrics
have been interpreted as anisotropic filtering operators. These flows are typi-
cally given by highly non linear PDE and involve usually transcendental and
non-constructive techniques. The main objective of this note is to show that in
certain cases, Geometric Quantization theory helps to overcome these difficulties
and provides new algorithms based on S.K. Donaldson’s ideas. This paper is a
shortened version of a preprint in preparation on the same subject.

1 Quantum Formalism and Emergence of Classical
Geometry

A classical physical system can be mathematically described as a symplectic
manifold X equipped with a symplectic form ω. In this setup, the observables
on the classical phase space (X,ω) is the Poisson algebra C∞(X,R) of real-
valued functions on X. From this point of view a quantization of the physical
system consists in associating on one hand a Hilbert space (the space of wave
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functions)H(X,ω) to (X,ω) and on another hand hermitian operators on (X,ω)
to the set of real-valued functions on X. Moreover, together with quantization
should appear a small parameter � (seen as the Planck’s constant) and in the
limit � → 0 the classical setting should emerge from the quantum one. We refer
to [4] as a general survey on this idea.

Berezin-Toeplitz quantization on Kähler manifolds is better understood than
quantization on general symplectic manifolds, see for instance [5]. Thus, in this
note, we decided to consider a holomorphic setting andX will be always a Kähler
manifold of complex dimension n. As shown by B. Kostant, J-M. Souriau and
others, any positively curved hermitian metric h on a holomorphic line bundle
L → X induces a quantization. Let us be more precise. We fix � = 1/k, where
k ∈ N∗ is large and denote ω the curvature of h that is, by assumption, a
Kähler metric living in the integral Kähler class [c1(L)]. In this setting one is
considering the space of holomorphic sections of the higher tensor powers of L,
namely H(X,ω) := H0(X,L⊗k) equipped with an L2 metric induced by h (there
are several possible choices for the volume form on X as we shall see later).

To any complex-valued function f it is associated a Toeplitz operator T
(k)
f

on H0(X,L⊗k) with symbol f . Using the natural L2-orthogonal projection P k :
C∞(X,L⊗k) → H0(X,L⊗k) induced by the Hilbert space structure, the Toeplitz

operator writes as T
(k)
f = Pk(f ·). It is a hermitian operator if f takes real values.

We want to emphasize that many objects in the Kähler/projective complex
geometry can be understood via this approach of quantum formalism. Let us give
briefly of list of examples and let us take this opportunity to fix some notations.

– Pointwise Riemann-Roch Formula. Coming back to the work of D.
Catlin and S. Zelditch using the micro-local analysis of L. Boutet de Monvel-

J. Sjöstrand, one can consider the density associated to the spectrum S(T (k)
f )

of T
(k)
f and check that it converges towards the Monge-Ampère mass, i.e

1

kn

∑

λ
(k)
i ∈S(T

(k)
f )

δ
λ
(k)
i

→ f∗ (ω
n) (1)

In particular, setting f = 1 and integrating over R gives back the asymp-
totic Riemann-Roch formula Nk := dimH0(X,L⊗k) = kn

∫
X ωn + O(kn−1)

relating the dimension of the quantum state to the volume of the phase state.
– Density of the Bergman Space. LetHk be the set of all hermitian metrics

on the vector space H0(X,L⊗k), the Bergman space at level k. The map
A �→ A∗A clearly yields an isomorphism

GL(Nk,C)/U(Nk) � Hk (2)

turning Hk into a finite dimensional symmetric space. On another hand,
we call H∞ the space of all smooth hermitian metrics on L with positive
curvature form. Fixing a reference metric h0 with curvature form ω0, any
other hermitian metric on L may be written as hφ = e−φh0 with curvature
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form ωφ = ω0 + i∂∂̄φ, using the convention which makes the curvature form
a real 2-form. Hence, one can do the following identification

H∞ = {φ ∈ C∞(X) : ωφ := ω0 + i∂∂̄φ > 0}
It is an infinite dimensional Riemannian symmetric space with non-positive
sectional curvature. It is natural to compare both spaces Hk and H∞. In
order to do so, let us introduce the dequantization process, with the injective
map ‘Fubini-Study’ map , FSk : Hk → H∞ such that

FSk(H) =
1

k
log(

Nk∑

i=1

|sHi |2h0
), (3)

where (sHi ) is anyH-orthonormal basis of holomorphic sections ofH0(X,L⊗k)
and h0 ∈ Met(Lk) a reference metric with curvature ω0. Another way of
thinking about FS(H) is to remark that it is the rescaled pulled-back of the
Fubini-Study metric on O(1) → PH0(X,L⊗k)∨ induced by the metric H
and the Kodaira embedding given by (sHi ). A theorem of G. Tian [6] proves
that the union of the images FS(Hk) is actually dense in C∞-topology in
H∞. Another way of stating his result is to say that any metric h ∈ H∞ is
the limit of the sequence of the algebraic metrics FSk(Hilbk(h)) where one
defined the map

Hilbωn,k(h) =

∫

X

〈., .〉hkωn. (4)

– Geodesics in the Space of Kähler Potentials. Let us fix H0, H1 ∈ Hk

two Bergman metrics. There exist λi ∈ R with 1 ≤ i ≤ Nk and bases (sH0

i )

and (sH1

i ), orthonormal with respect to H0 and H1, such that sH1

i = sH0

i eλi .
The geodesic Ht in Hk (with respect to the Riemannian structure induced
by (2)) between H0 and H1 is given by Ht ∈ Hk such that sHt

i = sH0

i etλi is
Ht−orthonormal. Given two metrics h0, h1 ∈ H∞, Tian’s theorem furnishes

two sequences of metrics H
(k)
0 and H

(k)
1 in Hk. Results of D.H. Phong- J.

Sturm [7, 8] show that the convergence of the Bergman geodesic Ht towards
the geodesic in the space of Kähler potentials between h0 and h1 when k →
+∞. In the same spirit, we would like to underline that there is convergence
of the rescaled geodesic distance on Hk to the geodesic distance on H∞
equipped of the Mabuchi-Semmes-Donaldson metric (other metrics can be
defined on H∞ and their quantization needs to be investigated).

– Flows in Kähler Geometry. Consider μ : CPN−1 ↪→ Herm(N) embed-
ding of the complex projective space into the space of hermitian N × N
matrices, seen as an Euclidean space. We define the map μ by associating
to a point of the projective space the orthogonal projection onto the line
corresponding to the point. It is a moment map for the action of U(N) on
CP

N−1. Let us consider a complex projective manifold X ⊂ CP
N−1 and Ω

a volume form on X . There are different possibilities to define the center of
mass of X in Herm(N) by considering the maps

μΩ =

∫

X

μΩ or μ̃ =

∫

X

μωn
FS , (5)
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where ωn
FS is the volume form induced by the Fubini-Study metric restricted

to X . In [9] and [10] are studied the downward gradient flow associated
to μ̃ and μΩ, called the balancing flow (respectively the Ω-balancing flow).
Coming back to our original quantization setup, we fix N = Nk and consider
the Kodaira embedding of X in PH0(X,L⊗k)∨. Then, at k → +∞, the
balancing flow converges to the famous Calabi flow, a 4th order PDE

∂ωφt

∂t
=

√−1∂̄∂scal(ωφt) (6)

for as long as the Calabi flow exists and the convergence is C1 in time. Here
we have denoted by scal(ω) the scalar curvature of the Kähler form ω. For
the Ω-balancing Kähler flow, its quantum limit is not the Kähler-Ricci flow
but the following Ω-Kähler flow, a 2nd order parabolic diffusion flow:

∂φt

∂t
= 1− Ω

ωn
φt

(7)

where ωφt = ω0 +
√−1∂∂̄φt. It is proved that it has actually a very similar

behavior to the Kähler-Ricci flow in [11], and in particular converges to the
solution of the Calabi’s conjecture (as defined in Section 2).

Two ingredients are crucial in the proofs proofs of these convergence results.
Firstly, the asymptotic expansion when k → +∞ of the “distortion Bergman
function” or “density of states function”. This function Bk,h overX is the restric-
tion to the diagonal of the Bergman kernel of the L2 projection on H0(X,L⊗k).
Bk,h depends on the metric h ∈ Met(L) and the L2 metric on H0(X,L⊗k): let
us choose HilbΩ,k(h) =

∫
X〈., .〉hkΩ, then we have an asymptotic (see [12])

Bk,h(p) = kn
ωn

Ω
+ kn−1 1

8π

ωn

Ω

(
scal(ω)− 2Δω

(
ωn

Ω

))
+O(kn−2). (8)

The second key ingredient is the fact that one is working with moment maps that
encode the symmetry of the considered geometric structures. Morally, these mo-
ment maps are detecting the “best” projective embedding which are projectively
equivalent to a given one X ↪→ PH0(X,L⊗k)∨. Such convenient embeddings (as
called in the seminal paper of J-P. Bourguignon, P. Li and S.T. Yau [13]) are
called balanced and enjoy nice algebraic and geometric properties. Let us mention
briefly that one can associate to an embedded manifold X ⊂ CP

Nk of dimen-
sion n a point in the Chow variety C(Nk, d, n). This variety parametrizes all the
subvarieties of CPNk of dimension n and fixed degree d. It is not possible to
construct a good quotient of C(Nk, d, n) for the action of PGL(Nk + 1) but Ge-
ometric Invariant Theory tells us what are the good PGL(Nk + 1)-orbits. They
are the Chow stable points. This G.I.T stability can be translated in terms of
symplectic geometry through the formalism of moment maps. In that different
language, stable points correspond to special metrics (or equivalently, special
embeddings), the balanced metrics. In the next section, we explain how this
frame of ideas can be applied to provide numerical applications.
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2 Calabi’s Conjecture and Donaldson’s Algorithm

2.1 Balanced Metric Associated to a Fixed Volume Form

Let us consider a smooth volume form Ω on X , and denote V olΩ(X) =
∫
X Ω.

Fix a Kähler class [ω] with volume equal to V olΩ(X). Calabi conjectured that
one can find a Kähler metric in [ω] with prescribed point-wise Monge-Ampère
mass, i.e a Kähler metric ω∞ ∈ [ω] such that ωn

∞ = Ω. This is equivalent to
solve the complex Monge-Ampère equation

(ω +
√−1∂∂̄φ)n = Ω (9)

with ω∞ = ω +
√−1∂∂̄φ. The real version of this equation has many applica-

tions, including in data processing or cosmology. Note that in the Kähler setting,
the Ricci curvature Ric(ω) of the Kähler metric ω has a particular simple ex-
pression in terms of its Monge-Ampère mass, Ric(ω) = −√−1∂∂̄ log(ωn). Thus,
to solve (9) allows us to define the operator Ric−1 [14]. Furthermore, since the
Ricci curvature has a natural geometric interpretation, it provides a link between
Monge-Ampère equations and other mathematical fields like optimal transport
theory, probability theory and physics. This is well explained in [15]. In [16], S.T.
Yau solved Calabi’s conjecture by proving the existence of a smooth (unique)
solution of this non linear PDE by a continuity method. The proof is not con-
structive. Thirty years later, Donaldson gave the following definition [17].

Definition 1. A metric h ∈ Met(L) is Ω-balanced or order k if the function
Bk,h is constant over the manifold.

Note that if h is Ω-balanced, then we will say thatH = HilbΩ,k(h) is Ω-balanced
and we get for such a metric

∫
X
〈Si, Sj〉FS(H)kΩ = δi,j for (Si) anH-orthonormal

basis. In other words, a balanced metric is a fixed point of the mapHilbΩ,k◦FSk.
As shown by Donaldson the natural dynamical system induced by this map has
a trivial behaviour:

Theorem 1. The dynamical system induced by the iterations of HilbΩ,k ◦FSk :
Hk → Hk has fixed attractive points, unique up to action of U(Nk).

The proof is natural using Kempf-Ness theory. Consider on Hk the functional

IΩ(H) =
1

kNk
log detH +

∫

M

(FSk(H) + log(h0))Ω

where h0 ∈ Met(L) is a reference metric. Then IΩ is convex on geodesics and
proper. It is the integral of the moment map μΩ (in the sense of [18, 19]) and its
critical points are Ω-balanced metrics. Using the arithmetico-geometric inequal-
ity and the concavity of the log, one can check that an iteration of HilbΩ,k ◦FS
decreases IΩ. Let us mention that IΩ is the finite dimensional analog of the
Aubin-Yau-Mabuchi [20] functional F 0

Ω : H∞ → R which is given by the formula

F 0
Ω(ωφt) =

∫ t

0

∫

M

φ̇s(Ω − ωn
φs
)ds
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where {φs}s=0..t ∈ H∞ is a path of potentials. This functional is related to the
entropy functional which writes in that case HΩ(ω) =

∫
M

log
(
ωn

Ω

)
ωn, see [21].

So we get for all k large enough a Ω-balanced metric in a canonical way. This
provides a family of algebraic metrics. From the leading term of (8), it is clear
that if the sequence of balanced metrics is convergent, its limit is necessarily the
solution of (9). For the proof of the convergence in C∞-topology, see [14].

2.2 Numerical Approximations of Solutions to the Complex
Monge-Ampère Equation (9)

Now, we provide an algorithm to compute an approximation of the solution to
the complex Monge-Ampère equation (9) based on [17]. The algorithm is based
on the simple fact that an iteration of HilbΩ,k ◦ FS decreases IΩ towards a
critical point.

1. Fix k large enough. Find a large number of points ps over the man-
ifolds (using charts, Monte-Carlo method, etc.)

2. Give Ω volume form, compute once the weights Ω(ps).
3. Fix the space of holomorphic sections H0(L⊗k). Use the symmetries

if possible to reduce the dimension. Determine a basis si ofH
0(L⊗k).

4. Fix a random invertible hermitian matrix H[0] ∈ Hk. r := 0.
5. Iteration of HilbΩ,k ◦ FS:

(a) Compute the inverse H−1
[r] .

(b) Compute

(H[r+1])α,β =
∑

s

sα(ps)s̄β̄(ps)∑
i,j(H

−1
[r] )ij̄si(ps)s̄j̄(ps)

Ω(ps).

If H[r+1] � H[r], stop iteration otherwise r := r + 1 and iterate.
6. Return H[r+1].

The output of this algorithm is an Ω-balanced metric (more precisely, an approx-
imation of it) at order k. Now, we discuss some technical issues. For a complex
n-dimensional manifold, the complexity of this algorithm is ∼ k4n, where most
of the computations are done to evaluate the Bergman function (essentially a ho-
mogeneous “polynomial” of degree k in n variables) over the whole set of points
picked on the manifold (how to choose the points on the manifolds will be dis-
cussed later). In particular it is clear that using this method, one can compute
with one desktop computer a solution of (9) on complex surfaces. This will be
compared with other methods.

The speed of convergence of the algorithm is exponential (so in practice a
dozen of iterations of Step 5 are sufficient) and the common ratio, up to normal-
ization, is actually the smallest positive eigenvalue of the Laplacian of ω∞.
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Furthermore, one can consider the r-th iterate H[r] = H[r](k) ∈ Hk (at Step
5) and the induced Fubini-Study metric h[r] = FSk(H[r]). Let us assume that
r = r(k) depends on the parameter k and that we make k → +∞. If r(k)/k → t,
then a result of R. Berman [22] asserts that h[r(k)] converges to the metric induced
by the (normalized) Kähler-Ricci flow induced at time t, namely

∂φt

∂t
= log

(ωφt

Ω

)
(10)

starting with the same initial metric than the one chosen in the algorithm (h0 =
limk→+∞ FSk(H[0](k)). This provides an algorithm of quantization (10) (while
Section 2.1 gives a discretization of the unormalized Ricci flow by unit time).
With the balancing flow (resp. the Ω-balancing flow) we obtain also algorithms
of quantization of the Calabi flow (6) (resp. the Ω-Kähler flow (7)).

3 Extra Remarks

We decided to restrict our attention to the complex Monge-Ampère equation of
the type (9) over complex projective manifolds due to its historical importance
and for pedagogical purpose. There are generalizations in various directions:
- One can consider Ω to be a non smooth or degenerate volume forms, see [23]
where it is introduced the notion of probability measure of finite energy.
- One can also consider others Monge-Ampère type equations where the RHS
depends on the unknown. They can be treated in a similar way, but convergence
results are more subtle. In particular, keeping in mind (8), one can treat the cases
of Kähler-Einstein metrics, Kähler-Ricci solitons, Kähler metrics with constant
scalar curvature and extremal Kähler metrics. Note that in [24, 25] it is precisely
Kähler metrics ω with scal(ω) = cst that appear in the C.A.R model.
- One can consider certain non compact manifolds. Among them are bounded
homogeneous complex domains, bounded pseudo-convex domains of Cn and ALE
(asymptotically locally euclidean) manifolds on which an adapted version of
Calabi’s conjecture holds. For bounded homogeneous domains, it is possible to do
Berezin quantizations and to define Ω-balanced metrics using Hilbert spaces, see
[26]. Even if the mathematical theory needs substantial development to obtain
convergence results, it is quite clear how to adapt the presented algorithm and
that the Monge-Ampère operator arises. This will be discussed later.

On another side, one can restrict to the case of projective manifolds with large
symmetry group, like toric manifolds. In that case, there is a correspondence
between the manifold and a (simple, rational, smooth) convex polytope in Rn,
the Delzant polytope. With this correspondence, certain analytic questions are
simplified and real Monge-Ampère equations appear naturally.
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[13] Bourguignon, J.P., Li, P., Yau, S.T.: Upper bound for the first eigenvalue of alge-
braic submanifolds. Comment. Math. Helv. 69(2), 199–207 (1994)

[14] Keller, J.: Ricci iterations on Kähler classes. J. Inst. Math. Jussieu 8(4), 743–768
(2009)

[15] Bourguignon, J.P.: Ricci curvature and measures. Jpn. J. Math. 4(1), 27–45 (2009)
[16] Yau, S.T.: Nonlinear analysis in geometry. Enseign. Math (2) 33(1-2), 109–158

(1987)
[17] Donaldson, S.K.: Some numerical results in complex differential geometry. Pure

Appl. Math. Q. 5(2), 571–618 (2009)
[18] Kempf, G., Ness, L.: The length of vectors in representation spaces. In: Alge-

braic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978).
Lecture Notes in Math., vol. 732, pp. 233–243. Springer, Berlin (1979)

[19] Mundet i Riera, I.: A Hitchin-Kobayashi correspondence for Kähler fibrations. J.
Reine Angew. Math. 528, 41–80 (2000)

[20] Mabuchi, T.: Some symplectic geometry on compact Kähler manifolds. I. Osaka
J. Math. 24(2), 227–252 (1987)

[21] Berman, R., Boucksom, S., Eyssidieux, P., Guedj, V., Zeriahi, A.: Kähler-Einstein
metrics and the Kähler-Ricci flow on log-Fano varieties. ArXiv 1111.7158 (2011)



620 J. Keller

[22] Berman, R.: Relative Kähler-ricci flows and their quantization. Arxiv 1002.3717
(2010)

[23] Berman, R., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to
complex Monge-Ampère equations. ArXiv 0907.4490 (2009)

[24] Barbaresco, F.: Information intrinsic geometric flows. In: MAX-ENT 2006 Conf.
Paris, vol. 872, pp. 211–218 (2006)

[25] Barbaresco, F.: Etude et extension des flots de Ricci, Kähler-Ricci et Calabi dans le
cadre du traitement de l’image et de la géométrie de l’information. Gretsi, Groupe
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