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We explain how the Calabi problem on a smooth projective complex
manifold can be discussed from the point of view of quantum formalism. We
derive from this approach a natural flow on the space of Kähler potentials
that has an interpretation in terms of moments maps. Finally we discuss
briefly how such techniques could be adapted to the study of the J-flow.

1. Introduction

In this paper, we are interested in the Calabi problem from the per-
spective of the quantum formalism. Let us recall that the Calabi problem
consists in finding, given a Kähler class [α] and a volume form Ω with ex-
pected total volume (i.e

∫
Ω = V ol(α)), a smooth Kähler metric ω in the

class [α] which represents this volume form Ω. This means that the Kähler
metric ω is a solution to the complex Monge-Ampère equation

ωn

n!
= Ω.

It is well known that the existence of a solution to this equation is proved by
a famous result of S.T. Yau [Yau78] using a continuity method argument.
Later, a result of H.D. Cao [Cao85] gave another proof using Ricci flow.
We refer to [Blo07, Bou79, Siu87] as surveys on the proofs of this result.
There are still some work in progress in that area, especially when one is
considering non-smooth volume forms or non smooth underlying manifold,
motivated by some natural questions related to the minimal model program
for complex algebraic manifolds (see the recent progress in [ST07, EGZ06,
EGZ09] for instance).

We will describe in this paper another flow method to solve the Calabi
problem. Details of the proofs will appear in another paper [CK10] which
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contains also some extended results. This flow, called the Ω-Kähler flow is
natural and comes from the quantum formalism and a natural moment map
construction.

We describe now the structure of this paper. In the first section, we give
a brief survey of the relationship between Bergman spaces and the space of
Kähler potentials via the quantization process. Then we recall some results
about balanced metrics mainly due to S.K. Donaldson and we introduce the
balancing flow via a moment map approach. We explain the main steps to
prove that at the quantum limit, the balancing flow converges towards the
Ω-Kähler flow and we discuss the behaviour of this latter flow. Finally, we
will address some open questions in the last section.

2. Quantum formalism and the space of Kähler potentials

A classical physical system can be mathematically described as a sym-
plectic manifold M equipped with a symplectic form ω. In that case, an
observable on the state space (M,ω) is just a real-valued function on M.
From this point of view, quantization consists on one hand in associating a
Hilbert space H(M,ω) to (M,ω), and on another hand in associating Her-
mitian operators on H(M,ω) to real-valued function on M. Moreover, the
quantizations should come in families parametrized by a small parameter
~ (the “Planck’s constant”) and in the limit ~ → 0 the classical setting
should emerge from the quantum one, in a suitable sense. See for example
[AE05, Gut00] for a general survey on quantization.

As shown by F. Berezin, M. Cahen, S. Gutt, J. Rawnsley and others,
any positively curved metric hL on a line bundle L→ M induces a Kähler
quantization with ~ = 1/k, where k is a positive integer. If we set ω = c1(hL)
the curvature of hL which is a smooth Kähler form, the quantization (at
level k) of (M,ω) is obtained by considering the finite dimensional complex
vector space

H(M,ω) := H0(M,L⊗k) = H0(M,Lk)

of holomorphic sections of Lk = L⊗k, that can be equipped with the Her-
mitian metric Hilb(hkL) :

Hilbk(hL)(s, s̄) =
∫
M
|s|2

hk
L

ωn

n!
.

Note that other choices of volume forms in the previous definitions are
possible at that stage. To any observable f ∈ C∞(M,R), one can associate
the hermitian Toeplitz operator T (k)

f on H0(M,L⊗k) with symbol f . It can
be defined by

T
(k)
f (u) = Pk(f · u),
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where Pk : C∞(M,L⊗k)→ H0(M,L⊗k) is the orthogonal projection induced
by the Hilbert space structure.

Most of the proofs of the results of this theory reduce to understand
when k → +∞ the asymptotic properties of the Bergman kernel Kk(x, y),
the integral kernel of the orthogonal projection Pk. These asymptotics can
be obtained using the micro-local analysis of Boutet de Monvel-Sjöstrand
[BdMS76, Cat99, Zel98] but other approaches do exist (we refer to [Zel09]
for details). The asymptotic expansion of the point-wise norm ρ(hL)(x) =
Kk(x, x) given by restricting the kernel to the diagonal (also called the
“distortion function” or “Bergman function”) is given by

ρ(hL)(x) = kn(1 + k−1b1(x) + k−2b2(x) + ...) (1)

which holds in the C∞−topology and where the coefficients bi depend poly-
nomially on hL and its covariant derivatives. Note that one can write
explicitly ρ(hL) using an orthonormal basis (Si) = (Si)i=1,...,dimH0(Lk) of
H0(M,L⊗k) with respect to the L2 inner product induced by hkL and ωn,
as the smooth function

ρL(x) =
dimH0(Lk)∑

i=1

|Si|hk
L
(x)

(compare with Section 3). This asymptotics result and its generalizations
have a lots of consequences and we shall quote some of them briefly. For
instance, if Sp(T (k)

f ) denotes the spectrum of the Toeplitz operator T (k)
f

defined above, then, coming back to the work of L. Boutet de Monvel and
V. Guillemin [BdMS76], one obtains at k → +∞,

1
kn

∑
λ
(k)
i ∈Sp(T

(k)
f )

δ
λ
(k)
i

→ f∗(ω)n

n!
. (2)

In particular, if we set f = 1 and integrate over R, then appears the first
terms of the asymptotic Riemann-Roch formula

Nk := dimH0(M,Lk)− 1 = kn
∫
M

ωnφ
n!

+O(kn−1) (3)

which identifies the leading asymptotics of the dimension of the quantum
state space with the volume of the classical phase space.

Another consequence is a nice result of G. Tian [Tia90] (see also [Bou90]
for a heat kernel approach) which shows that the Kähler metric ω in the
Kähler class 2πc1(L) can be approximated (actually in smooth topology,
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see [Rua98]) by the pull-back of the Fubini-Study metrics induced by the
Kodaira embeddings of M ↪→ PH0(M,Lk)∨ defined by the Hilbk(hL)-
orthonormal sections. In other words, if one considers the Bergman space
Bk of hermitian operators on H0(M,Lk) that can be identified with the
symmetric space GL(Nk + 1,C)/U(Nk + 1), then for any element of Bk cor-
responds a Bergman metric in 2πc1(L) by pull-backing the Fubini-Study
metric. If one denotes FS(Bk) the space of Bergman metrics (see Section 3
for definitions), then Tian’s result asserts that the space of Kähler potential
in 2πc1(L) is the C∞ closure of the union of FS(Bk), k >> 0. This suggests
that the space of Kähler potential and the Bergman spaces should enjoy sim-
ilar geometric properties. This is actually the case, and different results in
that directions have been proved. For instance, the geodesics of the space
of Kähler potentials can be approximated uniformly by the geodesics in the
Bergman space [PS06, Ber09a]. The underlying motivation behind these re-
sults is explained S.K. Donaldson’s work [Don99b]. Roughly speaking, one
expects to prove uniqueness, up to automorphisms, of constant scalar cur-
vature Kähler metrics in 2πc1(L), by connecting any given two such metrics
by a geodesic segment and by considering the Mabuchi K-energy. Moreover
the geodesic distance on the space of Kähler potentials can also be approx-
imated by the geodesic distance on Bk (see [Ber09b, CS09]). This frame
of ideas lead J. Fine to study the Calabi flow via the quantum formalism
[Fin09], in order to obtain new regularity results. His paper motivated the
study of the Calabi problem that we shall present now.

3. The Ω-balanced metrics and the Ω-balancing flow

In this first section we give some definitions and give a short survey
about Ω-balanced metrics.

Assume that M is a smooth polarized manifold of complex dimension n
and L an ample line bundle. We consider Ω a smooth volume form on M

such that
∫
M Ω = VolL(M) := (2π)n

n! c1(L)n, the volume of M with respect
to L.

In [Don09], S.K. Donaldson introduced a notion of Ω-balanced met-
ric, adapted to the Calabi problem mentioned previously. His construc-
tion is natural from the Geometric Invariant Theory perspective. These
Ω-balanced metrics are algebraic metrics coming from the embedding of the
manifold in PH0(Lk)∨ for k sufficiently large. Let us be more precise. Given
a (smooth) hermitian metric h ∈Met(Lk), one can consider the Hilbertian
map associated to a fixed smooth volume form Ω,

HilbΩ = Hilbk,Ω : Met(Lk)→Met(H0(Lk))
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such that
HilbΩ(h) =

∫
M
h(., .) Ω

is the L2 metric induced by the fibrewise h. On another hand, one can
consider the Fubini-Study applications

FS = FSk : Met(H0(Lk))→Met(Lk)

such that for H ∈Met(H0(Lk)), Si an H-orthonormal basis of H0(Lk) and
for all p ∈M ,

dimH0(Lk)∑
i=1

|Si(p)|2FS(H) =
dimH0(Lk)

VolL(M)
,

thus fixing pointwise the metric FS(H) ∈Met(Lk). One of the main result
of [Don09] asserts that the dynamical system

Tk = FS ◦HilbΩ

has a unique attractive fixed point.

Definition 3.1. Let (M,L) be a polarized manifold, Ω a smooth volume
form. Then for any sufficiently large k, there exists a unique fixed point
hk of the map Tk : Met(Lk) → Met(Lk) which is called Ω-balanced. The
metric HilbΩ(hk) ∈ Met(H0(Lk)) and the Kähler form c1(hk) ∈ 2πc1(L),
given by the curvature of hk, will also be called Ω-balanced.

When k tends to infinity, one obtains from [Don09] and [Kel09, Theorem
3], the following result.

Theorem 3.2. When k →∞, the sequence of normalized Ω-balanced met-
rics (hk)1/k ∈Met(L) converges to a hermitian metric h∞ in smooth topol-
ogy and its curvature is a solution to the Calabi problem of prescribing the
volume in a given Kähler class,

(c1(h∞))n/n! = Ω.

In particular, this theorem provides a way to construct numerical ap-
proximations of Calabi-Yau metrics [Don09].

Let us denote as before N + 1 = Nk + 1 = dimH0(Lk). Another way of
presenting the notion of Ω-balanced metric is to introduce a moment map
description. Firstly, let us consider

µ : CPN → iu(N + 1) (4)



6 balflow-pol printed on February 12, 2011

the classical moment map for the U(N + 1) action. Then, given an holo-
morphic embedding ι : M ↪→ PH0(Lk)∨, we can consider the integral of µ
over M with respect to the volume form:

µΩ(ι) =
∫
M
µ(ι(p))Ω(p)

which provides a moment map for the U(N + 1) action over the space
of all bases of H0(Lk). Actually, there is a Kähler structure on that space
isomorphic to GL(N+1), and U(N+1) acts isometrically with the moment
map given by

ι 7→ −
√
−1
(
µΩ(ι)− tr(µΩ(ι))

N + 1
IdN+1

)
.

Note that if one defines a hermitian metric H on H0(Lk), one can consider
an orthonormal basis with respect to H and thus it also makes sense to
speak of µΩ(H). As we shall see, in the Bergman space Bk, we have a
preferred metric associated to the volume form Ω and the moment map we
have just defined, and this is precisely an Ω-balanced metric.

We say that the embedding ι is Ω-balanced if and only if

µ0
Ω(ι) := µΩ(ι)− tr(µΩ(ι))

N + 1
IdN+1 = 0.

An Ω-balanced embedding corresponds (up to SU(N + 1)-isomorphisms) to
an Ω-balanced metric ι∗ωFS by pull-back of the Fubini-Study metric from
PH0(Lk) = PN , so our two definitions actually coincide. Note that for H ∈
Met(H0(Lk)), it also makes sense to consider µΩ(h) where h = FS(H) ∈
Met(Lk), i.e when h belongs to the space of Bergman type fibrewise metric
that we identify with Bk.

On another hand, seen as a hermitian matrix, µ0
Ω(ι) induces a vector

field on CPN . Thus, inspired from [Fin09], we study the following flow

dι(t)
dt

= −µ0
Ω(ι(t)) (5)

and we call this flow the Ω-balancing flow. To fix the starting point of this
flow, we choose a Kähler metric ω = ω(0) and we construct a sequence of
hermitian metrics hk(0) such that ωk(0) := c1(hk(0)) converges smoothly
to ω(0) providing a sequence of embeddings ιk(0) for k >> 0. Such a
sequence of embeddings is known to exist thanks to Tian-Bouche’s theorem
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mentionned in Section 2. For technical reasons coming from the asymptotics
expansion, we need to rescale this flow by considering the following ODE.

dιk(t)
dt

= −kµ0
Ω(ιk(t)) (6)

that we call the rescaled Ω-balancing flow. Of course, we are interested in
the behavior of the sequence of Kähler metrics ωk(t) = 1

k ιk(t)
∗(ωFS) when

t and k tends to infinity. In the paper, we give a brief overview of the
techniques used to prove the following result.

Theorem 3.3. For any fixed t, the sequence ωk(t) converges in C∞ topology
to the solution ω +

√
−1∂∂̄φt of the following Monge-Ampère equation

∂φt
∂t

= 1− Ω
(ω +

√
−1∂∂̄φt)n/n!

(7)

with φ0 = 0 and ω = limk→∞ ωk(0). Furthermore, the convergence is C1 in
the variable t.

We call the flow given by Equation (7), the Ω-Kähler flow.
Firstly, we shall identify the limit of a convergent sequence of rescaled

Ω-balancing flows (Section 4), that we shall call the Ω-Kähler flow. Then we
explain the behavior of the Ω-Kähler flow in any Kähler class (see Section
5). Finally, inspired from the work of [Don01] and especially [Fin09] for the
Calabi flow, we explain the main steps to obtain Theorem 3.3 in Section 6.
Later, we draw some possible generalizations of this work.

4. Study of the limit of the rescaled Ω-balancing flow

In that section, we assume that the sequence ωk(t) is convergent and we
want to relate its limit to Equation (7).

Given a matrix H in Met(H0(Lk)), we obtain a vector field XH which
induces a perturbation of any embedding ι : M ↪→ PH0(Lk)∨. The induced
infinitesimal change in ι∗ωFS is pointwisely given by the potential tr(Hµ)
where µ is given by (4). Thus, the corresponding potential in the case of
the rescaled Ω-balancing flow is −ktr(µ0

Ωµ). Since we are rescaling the flow
in (6) and considering forms in the class 2πc1(L), we are lead to understand
the asymptotic behavior when k →∞ of the potentials

βk = −tr(µ0
Ωµ) (8)

We need an asymptotics expansion at that stage. The following technical
result can be proved with similar arguments to Tian’s and Bouche’s theo-
rem [Bou90, Tia90] and we refer to [MM07, Theorem 4.1.1 (with notation
1.4.18)]) or [Kel03, Theorem 4.1] for a detailed proof.
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Proposition 4.1. Let (M,L) be a projective polarized manifold, h ∈Met(L)
such that its curvature c1(h) = ω > 0 is a Kähler form. Assume that Ω is a
volume form then we have the following asymptotic expansion for k →∞,

N+1∑
i=1

|Si|2hk = kn
ωn

Ω
+O(kn−1) (9)

where (Si) ∈ H0(M,Lk) is an orthonormal basis with respect to HilbΩ(hk).

We have the following consequence.

Proposition 4.2. Let hk ∈ Met(Lk) be a sequence of metrics such that
ωk := 1

kc1(hk) is convergent in smooth topology to the Kähler form ω. Then
the potentials βk = −tr(µ0

Ωµ) converge in smooth topology to the potential

1− Ω
ωn
.

Proof. Let us give a sketch of the proof. By the discussion at the begin-
ning of Section 4, we can write the balancing potential βk(Hk) at p ∈ M .
Now, the main ingredient of the proof is given by [Fin09, Theorem 26] and
[LM07]. Actually we understand the asymptotic behavior of the quantifica-
tion operator

Qk(f)(p) =
1
kn

∫
M

∑
a,b

〈Sa, Sb〉(q)〈Sa, Sb〉(p)f(q)ωnk (q). (10)

where (Si) is an orthonormal basis. Precisely, it is known by a result of K.
Liu and X. Ma that ‖Qk(f)−f‖Cm ≤ C

k ‖f‖Cm for an independent constant
C > 0. Then, for k →∞, one obtains

βk(Hk)(p) = 1− Ω
ωnk
Qk

(
1 +O

(
1
k

))
The convergence of Qk

(
1 +O

(
1
k

))
to 1+O(1/k) is proved in [Fin09, Pages

10-11]. Remark that the previous computation shows that we need to con-
sider the rescaled balancing flow instead of the flow defined by (5).

Here is the main result of this section which identifies the limit of the
sequence of rescaled Ω-balancing flows for k → +∞. It is a simple conse-
quence of Proposition 4.2 and a 1-parameter version of Bouche and Tian’s
result [Bou90, Tia90].

Theorem 4.3. Suppose that for each t ∈ R+, the metric ωk(t) induced by
Equation (6) converges in smooth topology to a metric ωt and, moreover,
that this convergence is C1 in t ∈ R+. Then the limit ωt is a solution to the
flow (7) starting at ω0 = limk→∞ ωk(0).
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5. Study of the Ω-Kähler flow

5.1. Existence

We are now interested in the flow

∂φt
∂t

= 1− Ω
(ω +

√
−1∂∂̄φt)n/n!

(11)

over a compact Kähler manifold (not necessarily in an integral Kähler class),
where φ0 = 0 and ω is a Kähler form in a fixed class [α]. Of course, this
can be rewritten as

(ω +
√
−1∂∂̄φt)n =

1

1− ∂φt

∂t

efωn (12)

where f is a smooth (bounded) function defined by f = log(Ω/ωn). Long
time existence and convergence of this flow can be studied following the
ideas of [Cao85]. Note that we have been informed that similar results were
proved recently in [FLM09] after we wrote this article and we want to thank
Prof. Z. Blocki for this reference. The main tool to obtain a priori estimates
is the maximum principle, Nash-Moser’s iterations techniques (for the C0

estimate) and Schauder regularity theory. Finally, we obtain existence for
all time. To prove the convergence of the Ω-Kähler flow, one can use some
results of P. Li and S.T. Yau for the positive solution of the heat equation
on Riemannian compact manifolds [LY86, Section 2] which are still valid in
that context. Then, we derive

Theorem 5.1. Let us denote vt = φt− 1
VolL(M)

∫
M φt

ωn

n! where φt is solution
to Equation (12), the Ω-Kähler flow. Then, vt converges when t → ∞ to
v∞ in smooth topology and ∂φt

∂t converges to a constant in smooth topology.

A direct consequence of Theorem 5.1 is the convergence of the Ω-Kähler
flow to the solution of the Calabi conjecture. Actually, the limit v∞ satisfies

(ω +
√
−1∂∂̄v∞)n/n! = (ω +

√
−1∂∂̄φ∞)n/n! = Ω.

6. Proof of Theorem 3.3

6.1. First order approximation

We know that from any starting point ω = ω0, there exists a solution
ωt = ω +

√
−1∂∂̄φt to the Ω-Kähler flow from the results of Section 5. We

can write ωt = c1(ht) where ht is a sequence of hermitian metrics on the line
bundle L. Furthermore, we can construct a natural sequence of Bergman



10 balflow-pol printed on February 12, 2011

metrics ĥk(t) = FS(HilbΩ(hkt ))
1/k by pulling back the Fubini-Study metric

using sections which are L2-orthonormal with respect to the inner product

1
kn

∫
M
ht(., .)kΩ.

Using Proposition 4.1 we obtain the asymptotic behavior for k >> 0,

ĥk(t) =
(
knc1(ht)n/n!

Ω +O
(

1
k

))1/k
ht. Thus, the sequence ĥk(t) is conver-

gent when k tends to infinity to ht.
On another hand, the rescaled Ω-balancing flow provides a sequence of

metrics ωk(t) = c1(hk(t)) solution to (6). Note that by construction, we fix
hk(0) = ĥk(0) for the starting point of the rescaled Ω-balancing flow.

We wish to evaluate the distance between the two metrics hk(t) and
ĥk(t). Since we are dealing with algebraic metrics, we have the (rescaled)
metric on Hermitian matrices given by

dk(H0, H1) =
(

tr (H0 −H1)2

k2

)1/2

on Met(H0(Lk)) which induces a metric on Met(L), that we denote distk.
Using arguments similar to [Fin09, Proposition 10] together with conver-
gence of the balancing flow to the Ω-balanced metric [Don09], we derive

Proposition 6.1. One has distk(hk(t), ĥk(t)) ≤ C
k , with C > 0 independent

of k.

6.2. Higher order approximation

One can improve the result of the last section by constructing a new
time-dependent function ψ(k, t) = φt +

∑m
j=1

1
kj ηj(t) which is obtained by

deforming the solution to the Ω-Kähler flow and which satisfies the property
to be “as close” as we wish to the Ω-Balancing flow. We will need to compare
this metric to the Bergman metric hk(t). Thus, we introduce the Bergman
metric associated to h0e

ψ(k,t), i.e

hk(t) = FS(HilbΩ(hk0e
kψ(k,t)))1/k.

We wish to minimize the quantity distk(hk(t), hk(t)) by showing an estimate
of the form distk(hk(t), hk(t)) < C/km+1, with C > 0 a constant indepen-
dent of k >> 0 and t. This is the parameter version of [Don01, Theorem
26], and Proposition 6.1 shows that the result holds for m = 0. One needs
to choose inductively the functions ηj and this is done by linearizing the
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Monge-Ampère operator. The key ingredient is that we are able to invert
the second order operator

Ω
ωnt

∆t −
∂

∂t
.

Theorem 6.2. Given φt solution to the Ω-Kähler flow (7) and k >> 0,
there exist functions η1, ..., ηm, for m ≥ 1, such that the deformation of φt
given by the potential ψ(k, t) = φt +

∑m
j=1

1
kj ηj(t) satisfies

distk(hk(t), hk(t)) ≤
C

km+1
.

for C > 0 is independent of (k, t).

6.3. L2 estimates in finite dimensional set-up

We start this section by fixing some notations and giving some defini-
tions. Let us fix a reference metric ω0 ∈ 2πc1(L) and denote ω̃0 = kω0 the
induced metric in 2πkc1(L). We need the notion of R-bounded geometry
in Cr [Don01, Section 3.2]. The purpose to work with R-bounded met-
rics is to avoid constants depending on k in the estimates. We say that
a metric ω̃ ∈ 2πkc1(L) has R-bounded geometry in Cr if ω̃ > 1

R ω̃0 and
‖ω̃ − ω̃0‖Cr(ω̃0) < R. We say that a basis (Si) of H0(M,Lk) is R-bounded
if the Fubini-Study metric induced by the embedding of M in PH0(Lk)∨

induced by the (Si) has R-bounded geometry. Let us fix

HA =
∑
i,j

Aij(Si, Sj) = tr(Aµ) ∈ C∞(M)

where A = (Aij) is a Hermitian matrix, (Si) is a basis of H0(Lk) and (., .)
denotes the fibrewise Fubini-Study inner-product induced by the basis (Si).
This function corresponds to the potential obtained by an A-deformation of
the Fubini-Study metric, i.e when one is moving the Fubini-Study metric in
an Lie(SU(N+1)) orbit. Moreover, we denote ‖A‖op = max |Aζ||ζ| the opera-
tor norm, given by the maximum moduli of the eigenvalues of the hermitian
matrix A, and the Hilbert-Schmidt norm ‖A‖2 = tr(A2) = tr(AA∗) ≥ 0.
The following result which is very general.

Proposition 6.3 ([Don01, Lemma 24],[Fin09, Proposition 12]). There ex-
ists C > 0 independent of k, such that for any basis (Si) of H0(Lk) with
R-bounded geometry in Cr and any hermitian matrix A,

‖HA‖Cr ≤ C‖µΩ(ι)‖op‖A‖

where ι is the embedding induced by (Si).
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A consequence is the following corollary.

Corollary 6.4. Let us fix r ≥ 2. Assume that for all t ∈ [0, T ], the family
of basis {(Si)i=1,..,Nk+1}(t) of H0(Lk) have R-bounded geometry. Let us
define by h(t) the family of Bergman metrics induced by {(Si)}(t). Then
the induced family of Fubini-Study metrics ω̃(t) satisfy

‖ω̃(0)− ω̃(T )‖Cr−2 < C sup
t
‖µΩ(ι(t))‖op

∫ T

0
dist(h(s), h(0))ds

where C is a uniform constant in k.

6.4. Projective estimates

This is the technical part of the proof and we will refer to [CK10] for
the details. In this section, we aim to control the operator norm of the
moment map in terms of the Riemannian distance in the Bergman space
Bk. The projectives estimates consists essentially in giving an upper bound
of ‖HA‖L2 from which we derive the following result.

Proposition 6.5. Let b0, b1 ∈ Bk. Then,

‖µΩ(b1)‖op ≤ e2distk(b0,b1)‖µΩ(b0)‖op.

6.5. End of the proof

Using the results of the previous sections, we are now ready to give a
sketch of the proof of Theorem 3.3, that is to show the smooth convergence
of Kähler metrics ωk(t) involved in the rescaled balancing flow (6) towards
the solution ωt to the Ω-Kähler flow. Using Theorem 6.2, for any m > 0, we
have obtained a sequence of Kähler metrics ω(k; t) = c1(h0e

ψ(k,t)) such that
ω(k; t) converges, when k → +∞ and in smooth sense, towards the solution
to the Ω-Kähler flow ωt = c1(h0e

φt). Moreover, one has for k large enough
and with hk(t) ∈ Bk the Bergman metric associated to h0e

ψ(k,t) ∈ Met(L),
the estimate

distk(hk(t), hk(t)) ≤
C

km+1
, (13)

where hk(t) is the metric induced by the rescaled Ω-balancing flow. Conse-
quently, to get the C0 convergence in t, all what we need to show is that

‖ωk(t)− c1(hk(t))‖Cr(ωt) → 0. (14)

The idea is to consider the geodesic in the Bergman space between these
two points. Firstly, we will get that along the geodesic from hk(t) to hk(t)
in Bk, ‖µΩ‖op is controlled uniformly if we can apply Proposition 6.5. This
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requires to prove that hk(t) is at a uniformly bounded distance of hk(t)
and that ‖µΩ(hk(t))‖op is bounded in k. But, this comes essentially from
Inequality (13) and the fact that one can choose precisely m ≥ n+ 1.

Secondly, one needs to show that the points along this geodesic have
R-bounded geometry. This can be proved by updating [Fin09, Lemma 9].

Thirdly, we are exactly under the conditions of the Corollary 6.4. Thus,
it gives, after normalisation of the metrics and with (13), that

‖ωk(t)− c1(hk(t))‖Cr(ωt) ≤ C‖µΩ(hk(t))‖opkn+2−m−1+r/2,

where we have used that the geodesic path from 0 to 1 is just a line. Here
C > 0 is a constant that does not depend on k. If we choose m > r/2+1+n,
we get the expected convergence in Cr topology, i.e Inequality (14). Of
course, this reasoning works to get the uniform C0 convergence in t for
t ∈ R+, because all the Kähler metrics ωt that we are using are uniformly
equivalent (we have convergence of the Ω-Kähler flow, thanks to Theorem
5.1).

A refinement of the ideas above allows us to prove that one has C1

convergence in t of the flows ωk(t), and this is actually sharp. This completes
the proof of Theorem 3.3 and we refer to [CK10] for details.

7. Open questions

One can ask if the main results of this paper hold at least partially when
one considers non ample classes or degenerate volume forms. Since a notion
of balanced metric for Lp volume forms (and even more general) has been
studied in details in the recent work [BBGZ09, Section 7], we expect the
long time existence and convergence of the Ω-Kähler flow when the volume
form Ω is Lp (p > 1), and semi-positive. This is certainly related to the
techniques developed by S. Kolodziej in his generalization of the Calabi
problem [Kol98].

We also expect that the ideas of this paper can be applied to the J-
flow. Let us recall that the J-flow is a parabolic flow of Kähler potentials
defined by Donaldson on manifolds where two Kähler classes have been
fixed a priori and for which long time existence is proved and convergence
is expected under some cohomological assumptions. To be more precise, let
us consider as before M a smooth projective manifold, L, L̃ two ample line
bundles, ω ∈ 2πc1(L) a Kähler form and ω̃ ∈ 2πc1(L̃) another Kähler form
on M . The J-flow is the flow given by

∂φt
∂t

= γ − ω̃ ∧ (ω +
√
−1∂∂̄φt)n−1

(ω +
√
−1∂∂̄φt)n

(15)
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where γ is a topological constant, given by γ =
R

M ω̃∧ωn−1R
M ωn . Donaldson

in [Don99a] showed that a necessary condition to have the existence of a
solution of the limit of the J-flow, i.e of the equation

ω̃ ∧ (ω +
√
−1∂∂̄φ)n−1 = γ(ω +

√
−1∂∂̄φ)n (16)

is that, at the level of the classes, [nγω − ω̃] > 0. An important point from
Donaldson’s geometric construction is that if one considers G the group of
exact ω-symplectomorphisms, it acts on the infinite dimensional manifold
M of diffeomorphisms f : M → M homotopic to the identity. This pro-
vides, with respect to a certain symplectic form M depending on (ω, ω̃), a
moment map in this infinite dimensional setup. The zero of this moment
map corresponds precisely to the (unique) solution of Equation (16) and the
J-flow to its gradient flow.

Similarly to what we did in Section 3, we define the map Hilbω̃ =
Met(Lk)→Met(H0(Lk)) by

Hilb′ω̃(h) =
1
γ

∫
M
h(., .) ω̃ ∧ c1(h)n−1

Also, we can define a J-balanced metric as a fixed point of

Tk,ω̃ = FS ◦Hilb′ω̃.

It is not difficult to check with Proposition 4.1 that if a sequence of J-
balanced metrics do exist for k >> 0 and converges, its limit is necessarily
a solution to Equation (16). With (4), we can also define a map on the
space of embeddings ι : M ↪→ PH0(M,Lk)∨

µω̃(ι) =
1
γ

∫
M
µ(ι) ω̃ ∧ (ι∗(ωFS))n−1

which is a moment map for the U(N + 1) action. The zeros of the map

√
−1
(
µω̃ −

tr(µω̃)
N + 1

IdN+1

)
correspond to J-balanced embeddings.
If one considers Symk the normalized k-th symmetric function defined on
Rn then on the cone {x = (x1, ..., xn)|xi > 0, 1 ≤ i ≤ n} ⊂ Rn, the function

x 7→ Symn(x)
Symn−1(x)
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is concave [CNS85]. In the case L = L̃, i.e when ω and ω̃ belong to the
same Kähler class, this allows us to study the linearization operator of the
application

φ 7→ (ω +
√
−1∂∂̄φ)n

ω̃ ∧ (ω +
√
−1∂∂̄φ)n−1

for φ strictly ω-psh and smooth. Under these assumptions, we expect that
if a solution of (16) does exist, there exists a convergent sequence of J-
balanced metrics for k >> 0 that approximate this solution in a similar
way to the main theorem of [Don01]. Finally, we expect that the negative
gradient flow of µω̃ converges when k → +∞ towards the J-flow (15) up to a
renormalisation of the time parameter, and thus a similar result to Theorem
3.3 holds. When no condition holds on the polarisations (L, L̃), we expect
that the algebraic notion of J-balanced metric will allow us to obtain new
obstructions for the existence of solutions to Equation (16).
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Birkhäuser Verlag, Basel, 2007.

[PS06] D. H. Phong and Jacob Sturm. The Monge-Ampère operator and
geodesics in the space of Kähler potentials. Invent. Math., 166(1):125–
149, 2006.

[Rua98] Wei-Dong Ruan. Canonical coordinates and Bergmann [Bergman] met-
rics. Comm. Anal. Geom., 6(3):589–631, 1998.

[Siu87] Yum Tong Siu. Lectures on Hermitian-Einstein metrics for stable
bundles and Kähler-Einstein metrics, volume 8 of DMV Seminar.
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[Zel09] Steve Zelditch. Book review of “holomorphic morse inequalities and
bergman kernels journal” (by Xiaonan Ma and George Marinescu). vol-
ume 46, pages 349–361. 2009.


	Introduction
	Quantum formalism and the space of Kähler potentials
	The -balanced metrics and the -balancing flow 
	Study of the limit of the rescaled -balancing flow
	Study of the -Kähler flow
	Existence

	Proof of Theorem 3.3
	First order approximation
	Higher order approximation
	L2 estimates in finite dimensional set-up
	Projective estimates
	End of the proof

	Open questions

