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The algebraic notion of Gieseker stability is related to the existence of balanced

metrics which are zeros of a certain moment map. We investigate some properties

of balanced metrics relative to the Harder-Narasimhan filtration of a vector bundle
and to blowups in the case of projective surfaces.

In Section 1 and 2, we give an overview of the relation between Gieseker
stability and the existence of a sequence of canonical metrics which converge
towards a (weakly) Hermite-Einstein metric if the vector bundle is Mumford
stable. In Section 3, we give an approximation of the curvature of a vec-
tor bundle using natural information coming from its Harder-Narasimhan
filtration. Eventually in Section 4 we look at the case of a Gieseker stable
vector bundle which is not Mumford stable over a projective surface.

Let (M,ω) be a smooth projective manifold of complex dimension n with
ω a Kähler form and let L be a very ample line bundle over M equipped
with a smooth hermitian metric hL.

1. Background material for stability of vector bundles

The purpose of this section is to introduce some classical notions about
stability of vector bundles. Let’s define for a holomorphic vector bundle E

on M of rank r(E),

µ(E) = µL(E) =
degL(E)

r(E)

the normalized degree of E (relative to the degree) with respect to the
polarization L. Moreover, we introduce the normalized Hilbert polynomial

1
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(relative to the Euler characteristic) for E by

pE(k) = pE,L(k) =
χ

(
E ⊗ Lk

)
r (E)

.

For n 7→ p1(n) and n 7→ p2(n) two functions with integer values, we will
denote p1 ≺ p2 (resp. p1 � p2), if for n large enough, p1(n) < p2(n) (resp.
p1(n) ≤ p2(n)).

Definition 1.1. A vector bundle E is said to be Mumford L-stable (resp.
semi-stable) if for all subsheaf F of E with 0 < r(F) < r(E), we have
µ(F) < µ(E) (resp. ≤). A Mumford semi-stable vector bundle is called
polystable if it is a direct sum of Mumford stable bundles (of same normal-
ized degree).

Definition 1.2. A vector bundle E is said to be Gieseker-Maruyama L-
stable (resp. L semi-stable) if for all subsheaf F of E with 0 < r(F) < r(E),
we have pF ≺ pE (resp. �). A Gieseker semi-stable vector bundle is
called polystable if it is a direct sum of Gieseker stable bundles (of same
normalized Hilbert polynomial).

By Riemann-Roch Theorem, Gieseker stability and Mumford stability
are equivalent if M is a curve. For higher dimension, we only have the
following implications:

E Mumford stable ⇒ E Gieseker stable

E Gieseker semi-stable ⇒ E Mumford semi-stable

Gieseker proved that there always exists a projective scheme M that
parametrizes the equivalence classes of torsion free Gieseker semi-stable
sheaves with fixed Chern classes. Moreover, the Gieseker stable sheaves are
parametrized by the closed points of an open subscheme of M. Gieseker
and Maruyama’s approach gives a natural compactification of the moduli
space M, whereas, in general, there may not exist a canonical structure
for the moduli space of equivalence classes of Mumford semi-stable sheaves.
However, for projective surfaces these structures of moduli spaces do exist
with different compactifications related by contractions and flips and admit
the same Donaldson polynomials.

2. Gieseker stability and canonical metrics

Let E be a hermitian holomorphic vector bundle of rank r on the pro-
jective manifold M . By Kodaira’s theorem, for k large enough we get an
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embedding ik given by a basis of sections (Si) of the space H0
(
M,E⊗ Lk

)
:

ik : M ↪→ Gr (r, N)
z0 7→ ker

(
evz0 : H0

(
M,E⊗ Lk

)
→ E⊗ Lk|z0

)∨
where we have set N = N (k) = dim H0

(
M,E⊗ Lk

)
= χ(E ⊗ Lk). More-

over, our situation is fully described by

E⊗ Lk → Ur,N

↓ ↓
M ↪→ Gr (r, N)

where Ur,N is the dual of the universal bundle over the Grassmannian of
quotients of dimension r of CN . Over Gr(r, N) equipped with the natural
Fubini-Study metric, acts the group

SU(N) =
{

R ∈ U (N) : det (R) = 1
}

and the associated moment map for the standard Fubini-Study metric is :

µSU(N),Gr(r,N) : [Q] 7→ Q tQ− r

N
Id ∈ su(N) = Lie (SU (N)) .

where we have identified su(N) with its dual. We consider an element
[Q] ∈ Gr (r, N) as a matrix Q ∈ MN×r (C) that represents r vectors of CN

that form an orthonormal basis, by the natural identification

Gr (r, N) =
{

R ∈ MN×r (C) : tRR = Id
}
/U (r)

Moreover, one notices that the map

µ̃r,N : ik 7→
∫

M

µSU(N),Gr(r,N(k))(ik (x))dV (x)

is a moment map for the action of SU (N) acting on C∞ (M,Gr (r, N)),
which is an infinite dimensional Kähler manifold by [Hi].

We also need the following definition:

Definition 2.1. Let h be a hermitian metric on a globally generated holo-
morphic vector bundle E. We define Bh ∈ End (E) as the restriction to the
diagonal of the Bergman kernel associated to the L2 metric induced by h on
H0(M,E) (also called distorsion function). If we set (si)i=1..m an orthonor-
mal basis of H0(M,E) for the metric

∫
M
〈 . , . 〉h and m = dim(H0(M,E)),

then for all z ∈ M ,

Bh(z) =
m∑

i=1

si(z)〈 . , si(z)〉h

and this definition does not depend on the choice of the basis (si)i=1..m.
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Note V the volume of (M,ω). Inspired by the ideas of [Do3], we have

Theorem 2.1. (Wang) The holomorphic vector bundle E is Gieseker stable
if and only if its automorphism group is finite and there exists k0 ≥ 0 such
that for all k > k0, the embedding ik can be balanced, in the sense that there
exists a unique g ∈ SL(N) (up to action of SU(N)) such that

µ̃r,N (g · ik) =
∫

M

µSU(N),Gr(r,N)(g · ik(x))dV (x) = 0

This is equivalent to the existence of a sequence of hermitian metrics hk on
E, called balanced metrics, such that pointwise

Bhk⊗h
Lk

=
χ

(
E⊗ Lk

)
rV

IdE⊗Lk .

Sketch of the proof

Gieseker stability and GIT

We refer to [H-L] for the underlying construction of Quot scheme of Gieseker
semi-stable sheaves and [M-F-K] for notions of Geometric Invariant Theory
(GIT). We shall use the following stability criterion developed by Gieseker
and Maruyama in [Gi] and [Ma] that relates the condition of stability for a
vector bundle with a condition of GIT-stability :

Theorem 2.2. (Gieseker-Maruyama) Let E be a globally generated vector
bundle of rank r. Let Si be a basis of sections of H0(M,E) and let T (E) ∈
Hom(∧rH0(M,E),H0(M,det(E))) defined by

T (E)(Si1 , . . . , Sir ) = Si1 ∧ · · · ∧ Sir .

We can view T (E) as a point in the space

ZE := P Hom(∧rH0(M,E),H0(M,det(E))).

The vector bundle E is Gieseker stable (resp. semi-stable) if and only if
for k large enough, T (E ⊗ Lk) ∈ ZE⊗Lk is GIT-stable with respect to the
action of SL(H0(M,E ⊗ Lk)) and the linearisation OZ

E⊗Lk
(1).

Suppose we have fixed a reference metric h on the hermitian holomorphic
vector bundle E and that E⊗Lk is globally generated. We get a L2-metric
H = Hilb(h) =

∫
M
〈., .〉h⊗hL

kdV on the space H0(M,E ⊗ Lk). From the
embedding ik in the Grassmannian given by an H-orthonormal basis Si,
we get a metric on the bundle Ur,N . Since, i∗kUr,N ' E ⊗ Lk, we get a
natural metric on E that we will call FS(H), and therefore a metric on
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∧r(E ⊗ Lk) that we will simply denote ‖ . ‖. Eventually, this gives us a
metric on Z := ZE⊗Lk , that we can evaluate at a point z ∈ Z:

|||z|||2Z = sup
(Si) H-orthonormal

basis of H0(M,E⊗Lk)

∫
M

∑
1≤i1<···<ir≤N

‖Si1 (p) ∧ · · · ∧ Sir (p)‖2 dV

where the sup is independent of the choice of the basis. The classical Kempf-
Ness’s result [K-N, Theorem 0.2], gives us an analytical criterion to check
the GIT-stability of a point z ∈ Z, with respect to the linearization OZ(1)
and the SL(N) action : z is GIT -stable if and only if the application

L(g) : g 7→ log
∫

M

∑
1≤i1<···<ir≤N

‖g · Si1 (p) ∧ · · · ∧ g · Sir‖
2
dV

is bounded from below by a strictly positive constant and is proper (for all
t > 0 there exists a compact set K ⊂ SL(N) such that L(g) > t if g /∈ K).

Interlude about the notion of integral of a moment map

Consider Ξ a smooth symplectic manifold, ω its symplectic form and Γ
a compact Lie group acting symplectically on Ξ. If µ is a moment map
associated to this action, then one can define the functional

Ψ : Ξ× ΓC → R

that we will call the “integral of the moment map µ” and that satisfies the
following properties:

• for all p ∈ Ξ, the critical points of the restriction Ψp of Ψ to {p} × ΓC

coincide with the points of the orbit OrbΓC(p) on which the moment map
vanishes;

• the restriction Ψp to the lines
{
eλu : u ∈ R

}
where λ ∈ Lie

(
ΓC)

is
convex.

Theorem 2.3. (Mundet i Riera) There exists a unique application Ψ :
Ξ× ΓC → R that satisfies:

1. Ψ(p, e) = 0 for all p ∈ Ξ;
2. d

duΨ
(
p, eiλu

)
|u=0

= 〈µ (p) , λ〉 for all λ ∈ Lie (Γ);

Moreover, this functional enjoys the following properties: Ψ is Γ-invariant
and satisfies the cocycle relation Ψ(p, γ) + Ψ (γp, γ′) = Ψ (p, γ′γ) and also
the relation Ψ(γp, γ′) = Ψ

(
p, γ−1γ′γ

)
for all p ∈ Ξ, γ, γ ∈ ΓC. Eventually,

d2

du2 Ψ
(
p, eiλu

)
≥ 0 for all λ ∈ Lie (Γ) with equality if and only if the vector

field
−→
Xλ

(
eiλup

)
= 0.
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Remember that we have a diffeomorphism

Γ× Lie (Γ) → ΓC

(γ, u) 7→ γeiu.
(1)

Let ρ : ΓC → GL (W ) be a faithful representation on a finite dimension
complex vector space equipped with a hermitian metric such that ρ (Γ) ⊂
U (W ). We still denote ρ the representation induced on Lie (Γ) and on Γ.
This leads to define the following metric on Lie (Γ) by

〈a, b〉Γ = Tr
(
ρ (a) ρ (b)∗

)
.

By the diffeomorphism (1), we can associate to each element γeiu ∈ ΓC its
logarithm logΓC

(
γeiu

)
= u.

Definition 2.2. We will say that Ψ is linearly log-proper respectively to
the metric 〈 . , . 〉Γ on ΓC if there exists two constants c1 > 0 and c2 > 0
such that for all g ∈ ΓC and for all p ∈ Ξ,

|logΓC (g)|Γ ≤ c1Ψp (g) + c2.

Balanced condition and Kempf-Ness functional

We want to measure the action of SL(N) on a point z ∈ Z. For that reason,
with the same notations as before, we introduce the following functional for
g ∈ SL(N) which depends only on the choice of H,

K̃Nk,E : g 7→ 1
2

∫
M

log

∑
1≤i1<···<ir≤N ‖g · Si1 (p) ∧ · · · ∧ g · Sir

(p)‖2∑
1≤i1<···<ir≤N ‖Si1 (p) ∧ · · · ∧ Sir (p)‖2

dV (p) .

where (Si)i=1,...,N is an H-orthonormal basis of holomorphic sections of
E⊗Lk. Let [Q (p)] be the point of Gr (r, N) given by the embedding ik at
p ∈ M and the metric H on H0(M,E ⊗ Lk). Our functional is related to
a functional that plays a key role in Donaldson’s theory [Do1,Do2,P-S]:

Definition 2.3. Let E be a hermitian holomorphic vector bundle on M and
h1, h2 two hermitian metrics on E. We define the Kempf-Ness functional
as the integral of the first Chern-Weil form:

KNE (h1, h2) =
∫

M

log det
(
h−1

2 h1

) ωn

n!
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Lemma 2.0.1. For all g ∈ SL (N),

K̃Nk,E(g) =
1
2
KNE⊗Lk (FS(H ◦ g), FS(H))

=
1
2

∫
M

log
det

(
tQtggQ

)
det

(
tQQ

) dV,

and K̃Nk,E(g) is the integral of the moment map µ̃r,N .

Proof. One can represent [Q (p)] for all p ∈ M as a Stieffel point

Q′ =
(

Z

Idr×r

)
with Z(p) = [z1, . . . , zr] ∈ M(N−r)×r (C). There exists an antiholomor-
phic application Φ : Gr (r, N) → Gr (N − r, N) such that Φ ([Q′]) = [Q′⊥],

which implies Φ
((

Z

Idr×r

))
=

(
Id (N−r)×(N−r)

−tZ

)
.

Set [z1, . . . , zN−r] := − tZ and fix a basis (ei)i=1,...,N of CN . As it is men-
tioned in [Mo, Chapter 7], the potential of the Fubini-Study metric on the
Grassmannian is given explicitly by

log |(eN−r+1 + z1) ∧ · · · ∧ (eN + zr)|2

= log |(e1 + z1) ∧ · · · ∧ (eN−r + zN−r)|2

= log |(e1 + z1) ∧ · · · ∧ (eN−r + zN−r) ∧ (eN−r+1 + z1) ∧ · · · ∧ (eN + zr)|

= log det
(

Id (N−r)×(N−r) Z

−tZ Idr×r

)
= log det

(
Id (N−r)×(N−r) + ZtZ

)
= log det

(
Idr×r + tZZ

)
= log det

(
tQ′Q′)

= log det
(
tQQ

)
.

A simple computation shows that at the point [g ·Q], this potential is also
given by

log det
(
tQ tggQ

)
.

For the second assertion, it is sufficient to consider the induced action by
the 1-parameter subgroup of the form

{
u → eSu ∈ SL(N)

}
(here S 6= 0 is a

hermitian trace free matrix). Since we know that for all A1,A2 ∈ GL (N, C),
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one has D detA1 (A2) = det (A1) tr
(
A−1

1 A2

)
, we obtain:

d

du

(
K̃Nk,E

(
eSu

))
=

1
2

∫
M

d

du
log

(
det

(
tQ teSueSuQ

))
dV,

=
1
2

∫
M

tr
((

tQ e
tSueSuQ

)−1 (
tQ e

tSu
(
S + tS

)
eSuQ

))
dV.

Since we have chosen an orthonormal basis, tQQ = Id and consequently,
for u = 0 we get,

d

du

(
K̃Nk,E

(
eSu

))
|u=0

=
∫

M

tr(tQSQ)

=
∫

M

tr(tQSQ)− r

N

∫
M

tr (S)

= 〈µ̃r,N ([Q]) ,S〉

and we conclude by Theorem 2.3.

Lemma 2.0.2. The functional K̃Nk,E( . ) is linearly log-proper with respect
to the action of SL(N).

Proof. Define the Kähler cone respectively to ω:

Ka (M,ω) =
{

ϕ ∈ C∞ (M, R) : ω +
√
−1
2π

∂∂ϕ > 0
}

We set

ϕ = log
∑

1≤i1<···<ir≤N

‖Si1 (p) ∧ · · · ∧ Sir
‖2 .

Since ϕ ∈ Ka (M,ω), a theorem of Kähler geometry of G. Tian [Ti] asserts
that there exists two constants α = α(M,ω) > 0 and C = C(M,ω) > 1
such that ∫

M

e−α(ϕ−sup
M

ϕ) ωn

n!
< C,

which implies

log
(∫

M

e−α(ϕ−sup
M

ϕ) ωn

n!

)
< C ′,
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and by concavity of log, that∫
M

ϕ
ωn

n!
≥

∫
M

(
sup

M

ϕ

)
ωn

n!
− 1

β

≥ log

 sup
p∈M

∑
1≤i1<···<ir≤N

‖Si1 (p) ∧ · · · ∧ Sir
(p)‖2

− 1
β

.

Therefore, for all g ∈ SL (N) ,

K̃Nk,E(g · h) ≥ log |||g · z|||2Z −
1
β

,

where β(M,ω) > 0 depends only on M and ω. In fact, we also get,

log |||g · z|||2Z ≥ K̃Nk,E(g · h) ≥ log |||g · z|||2Z −
1

β(M)
.

By Lemma 2.0.2, the functional is K̃Nk,E is proper and bounded from
below if and only if the functional L is bounded from below and proper,
which means that the point T (E ⊗ Lk) ∈ Z is GIT-stable. Moreover we
obtain that the embedding ik is balanced if and only if the Fubini-Study
metric induced by ik is a scalar multiple of the original metric on E. This
means that there exists a hermitian metric hk on E which is a fixed point
for FS ◦ Hilb (resp. Hilb(hk) is a fixed point for Hilb ◦ FS). Now, we
remark that QtQ = λId if and only if tQQ is the matrix of the orthogonal
projection to ker(Q). But tQQ is a bundle morphism corresponding to the
Bergman kernel of E for the metric hk. Therefore, we obtain the second
part of Theorem 2.1.

An interesting consequence of Theorem 2.1 is an analogue of the
work [Do4] of S. Donaldson in the case of vector bundles. It uses essen-
tially two facts. First of all, one knows an asymptotic expansion in k of the
Bergman kernel over a compact manifold:

Bh⊗h
Lk

= knId + kn−1

(
1
2
Scal(gij)Id +

√
−1ΛωFh

)
+ · · ·

if one has assumed that ω =
√
−1
2

∑
gijdzi∧dzj represents c1(L). Secondly,

once one has fixed a holomorphic structure ∂ on E, the Bergman kernel can
be seen as a moment map for the action of the Gauge group G of E on the
infinite dimensional Kähler space

H =
{

(s1, . . . , sN ) ∈ C∞(M,E⊗ Lk)N :
si are linearly independent,
∂si = 0

}
.

and the points in H//(G × SU(N)) correspond to balanced metrics.
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Theorem 2.4.
• Suppose E is Gieseker stable. If the sequence (hk) of balanced metrics on
E converges, then its limit is weakly Hermite-Einstein.

• If E is Mumford stable then the sequence of balanced metrics hk converges
and the convergence is Cm for all m ≥ 0.

Theorems 2.1 and 2.4 were found independently by X. Wang [Wa1,Wa2]
and J. Keller. A similar problem had already been studied in [Dr] in the
case of curves. See also [Ke] for a generalization of this theorem to the case
of Vortex equations and stability of pairs.

Remark. A hermitian metric h on vector bundle E is weakly Hermite-
Einstein if the curvature Fh of the Chern connection relative to h satisfies
the equation

√
−1ΛωFh = λhIdE ,

where λh is a continuous function with real values. Since M is compact,
there exists a unique function f ∈ C∞ (M, R) (up to a constant), such that
the new metric ef · h is Hermite-Einstein (i.e λef ·h = µ(E) is constant). A
good reference on this subject is [L-T].

3. Harder-Narasimhan filtration

In this section, we give an application of Theorem 2.4. We will need to
introduce the following classical notion:

Definition 3.1. If F is a torsion free sheaf, a Härder-Narasimhan filtration
for F is an increasing filtration

0 = HN0 (F) ⊂ · · · ⊂ HNl (F) = F ,

such that the factors grHN
i (F) = HNi (F) /HNi−1 (F) for i = 1, . . . , l are

torsion free Mumford semi-stable with normalized degree µi satisfying

µmax (F) := µ1 > · · · > µl =: µmin (F) ,

Such a filtration exists and is unique. The graduated object

grHN (F) =
⊕

grHN
i (F)

is uniquely determined by the isomorphism class of F . Moreover, there
exists a unique Mumford semi-stable saturated subsheaf F1 ⊂ F , called
maximal destabilizing subsheaf of F , such that:

• If F2 ⊂ F is a proper subsheaf of F , then µ (F2) ≤ µ (F1);
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• If µ (F2) = µ (F1), then r (F2) ≤ r (F1).

Notice that HN1 (F) is the maximal destabilizing subsheaf of F .

We know that if E is a Mumford polystable vector bundle, E splits
holomorphically as E = ⊕l

i=1Ei, the induced metric on Ei is Hermite-
Einstein and the induced filtration is given by HNi (E) = ⊕j≤iEj . Now,
for an unspecified holomorphic structure, the Harder-Narasimhan filtration
may not split holomorphically nor be given by vector subbundles.

Lemma 3.0.3. Let F be a torsion free sheaf on M and let F ′ =
F/HN1 (F). Then

HNi+1 (F) = ker (F → F ′/HNi (F ′))

and HNi+1 (F) /HN1 (F) = HNi (F ′).

Proof. The proof is outlined in [H-L]. It uses the fact that for a sequence
0 → A → B → C → 0 , one has ker (HN1(B) → C) = HN1(A).

Proposition 3.1. Consider the exact sequence of torsion free sheaves

0 → E1 → E → E2 → 0.

with l1 := µmin (E1) > µmax (E2). Then the Harder-Narasimhan filtration of
E is given by

0 = HN0 (E) ⊂ HN1 (E1) ⊂ · · · ⊂ HNl1 (E1)

= E1 ⊂ HNl1+1 (E) ⊂ · · · ⊂ HNl (E) = E,

with:

HNi (E) = ker (E → E2/HNi−l1 (E2)) for i = l1, . . . , l,

HNi (E) = HNi (E1) for i = 0, . . . , l1.

Moreover, grHN
E = grHN

E1
⊕ grHN

E2
.

Proof. Let F ⊂ E be the maximal destabilizing sheaf. We get µ (F) ≥
µmax (E1) ≥ µmin (E1) > µmax (E2) by hypothesis. The application φ : F →
E2 is non trivial, because otherwise we would have µ (Im (φ)) ≥ µ (F) >

µmax (E2) which would contradict the semi-stability of F . Therefore we
have F ⊂ E1 and F = E1 or F is the maximal destabilizing subsheaf of E1.
If E1 is Mumford semi-stable, then clearly E1 is the maximal destabilizing
subsheaf of E as shows the previous lemma.
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For general E1, we use the same kind of arguments by induction over the
length of the Harder-Narasimhan filtration of E1. The sequence

0 → E1/F → E/F → E2 → 0

still satisfies the inequality µmin (E1/F) = µmin (E1) > µmax (E2). By in-
duction hypothesis, we get

0 ⊂ HN0 (E1/F) ⊂ · · · ⊂ HNl1−1 (E1/F) = E1/F
E1/F ⊂ HNl (E/F) ⊂ · · · ⊂ HNl−1 (E/F) = E/F

with HNi (E/F) = ker (E/F → E2/HNi−l1+1 (E2)). From another side, by
the lemma,

HNi (E) = ker (E → (E/F) /HNi−1 (E/F))

and therefore,

HNi (E/F) = ker (E → E2/HNi−l1 (E2)) .

By induction hypothesis, we know that for i ≤ l1,

HNi (E) /F = HNi−1 (E/F) = HNi−1 (E1/F)

and we also obtain by the lemma,

HNi+1 (E) = ker (E → (E/F) /HNi−1 (E/F))

= ker (E → (E/F) /HNi−1 (E1/F))

= ker (E → (E/F) / (HNi (E1) /F))

= HNi+1 (E1)

Finally, the last assertion is obvious.

Definition 3.2. To each factor HNi (E) of a vector bundle E equipped
with a hermitian metric hE , corresponds a projection (orthogonal for hE)
πE,hE

i on HNi (E). Define the hermitian endomorphism Πω,hE

HN(E):

Πω,hE

HN(E) =
∑

µ
(
grHN

i (E)
) (

πE,hE

i − πE,hE

i−1

)
.

Remark. As we have seen, if E is a holomorphic vector bundle equipped
with a Hermite-Einstein metric hE , then by Uhlenbeck-Yau’s Theorem E

is Mumford polystable and we have the decomposition

(E, hE) = (E1, h1)⊕ · · · ⊕ (Ek, hk)
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by Mumford stable vector bundles with the same normalized degree µ(E).
In particular,

√
−1ΛFhi

= µ (E) IdEi
and

Πω,hE

HN(E) = µ (E)

 IdE1

. . .
IdEl

 .

Definition 3.3. Let F be a torsion free sheaf which is Mumford semi-
stable. A Jordan-Hölder filtration of F is a filtration

0 = JH0 (F) ⊂ · · · ⊂ JHl (F) = F

such that the factors grJH
i (F) = JHi (F) /JHi−1 (F) are all Mumford

stable with same normalized Hilbert polynomial. The graduated object

grJH (F) =
⊕

grJH
i (F)

does not depend on the choice of the filtration.

Theorem 1. Let E be a holomorphic vector bundle on (M,ω). If the
Harder-Narasimhan filtration HN (E) of E is given by subbundles, then
for all ε > 0, for all r ≥ 0, there exists a smooth hermitian metric h on E

compatible with the holomorphic structure such that∥∥∥√−1ΛωFh −Πω,h
HN(E)

∥∥∥
Cr

< ε.

Proof. We give a proof by induction on the length of the Harder-
Narasimhan filtration of E.

If the rank of E is 1, this comes from the fact that we can use the Jordan-
Hölder filtration since E is in particular Mumford stable, and we can apply
Theorem 2.4 to get a sequence of metrics weakly Hermite-Einstein hk which
are, up to a conformal change, Hermite-Einstein metrics h′k. Therefore, for
k large enough, ∥∥∥√−1ΛFE,h′k

− µ (E) IdE

∥∥∥
Cr

= O

(
1
k

)
.

Now, if the length of the Harder-Narasimhan filtration of E is bigger than
2, then

0 → E1 → E → E2 → 0, (2)

where E1 is the maximal destabilizing sheaf of E which is, as E2, a vector
bundle. The filtrations HN (E1) and HN (E2) are given by vector bundles



November 29, 2005 12:24 Proceedings Trim Size: 9in x 6in canmet-HN

14 J. KELLER

by Proposition 3.1, and for the metrics h1 et h2 (and respectively their
curvatures F1, F2 of E1 and E2), we get∥∥∥√−1ΛF1 −Πω,h1

HN(E1)

∥∥∥
Cr

< ε/3,
∥∥∥√−1ΛF2 −Πω,h2

HN(E2)

∥∥∥
Cr

< ε/3.

From (2) we have Πω,h1⊕h2
HN(E) = Πω,h1

HN(E1)
⊕ Πω,h2

HN(E2)
and the holomorphic

structure on E has the following form:

∂E =
(

∂E1 α

0 ∂E2

)
,

with α a smooth section of Ω0,1 (Hom (E1, E2)) (see [Ko, §1.6]). Then,∥∥∥√−1ΛFE −Πω,h1⊕h2
HN(E)

∥∥∥
Cr

≤
∥∥∥√−1ΛF1 −Πω,h1

HN(E1)

∥∥∥
Cr

+
∥∥∥ΛF2 −Πω,h2

HN(E2)

∥∥∥
Cr

+ 2 sup |α|2 + 2 sup |∂∗α|2,

Up to a Gauge change of the form g =
(

δ 0
0 δ−1

)
, we can assume that

2
(
sup |α|2 + sup |∂∗α|2

)
< ε/3.

This allows us to conclude, considering the new structure g(∂E).

Remark. In the case of a curve, the terms of the filtration of E are
locally free, and therefore subbundles of E. If we attach to each vector
bundle of this filtration a Jördan-Hölder filtration, we immediately get an
improvement of [Br, Theorem 5] which was our original motivation.

4. The case of surfaces

For complex surfaces, a Gieseker stable vector bundle may not be Mumford
stable. By Theorem 2.4, we know that for Gieseker stable vector bundles
which are not Mumford stable, the sequence of balanced metrics will not
converge.
From another side, we know that in the case of surfaces, the singularities
of torsion free sheaves are just points, and the reflexive sheaves are locally
free [Ko, §5]:

Proposition 4.1. Let M be a complex manifold. The singular set S (F)
of the analytic coherent sheaf F is defined as the closed subvariety upon
which F is not locally free. If F → M is a torsion free sheaf, S (F) has
codimension at least 2. If F is reflexive, then S (F) has codimension at
least 3.
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This remark is the key point of the “gluing construction” technique
introduced by N. Buchdahl in [Bu2]. To a Mumford semi-stable sheaf F
on M , one can associate a semi-stable vector bundle Σ (F) that admits a
Hermite-Einstein metric in the following way: Σ (F) = Σ (F∗∗) and if F ′ ⊂
F satisfies µ (F ′) = µ (F) then Σ (F) = Σ (F ′) ⊕ Σ (F/F ′). One checks
by induction on the rank that we get a unique vector bundle Σ (F). This
vector bundle and F has same rank and determinant and Σ (F) is a direct
sum of Mumford stable vector bundles with the same normalized degree,
i.e Mumford polystable. Moreover, we have non trivial homomorphisms
F → Σ (F) and Σ (F) → F∗∗. For a semi-stable vector bundle E, we shall
denote by B (E) the set of points x ∈ M for which there exists a Mumford
semi-stable vector bundle E′ with µ (E′) = µ (E) and an inclusion E′ → E

such that E′
x → Ex is not of maximal rank. By an induction on the rank,

one proves that B (E) is finite. In the case of a Kähler compact surface M ,
the following result holds [Bu2, Proposition 4.3]:

Lemma 4.0.4. Let E be a Mumford semi-stable vector bundle such that
Σ (E) =

⊕
i

Υi ⊗ Ei where Υi is vector space of dimension di and Ei is

a Mumford stable vector bundle with µ (Ei) = µ (E) and Ei � Ej for
i 6= j. Let choose e > r (E) maxi (di/r (Ei)). Then for all choice of e

points (xi)i=1..e ∈ M\B (E), there exists a vector bundle Ẽ on the resolution
M̃

π→ M of these points such that:

• Ẽ restricts to O (1)⊕
∑r−1

1 O on each component of the exceptional di-
visor,

•
(
π∗Ẽ

)∗∗ = E,

• Ẽ is Mumford stable with respect to the polarization ωε = π∗ω+ε
∑p

i=1 si

for ε small enough and where si is the non trivial holomorphic section
that represents exactly the divisor −π−1 (xi).

Now the fact that Mumford stability implies Gieseker stability gives us
directly the following result.

Theorem 2. Let M be a projective surface and E be a Gieseker stable
vector bundle on M which is not Mumford stable. There exists a resolution
M̃

π→ M consisting of a blowup of a finite number of points and a vector
bundle Ẽ on M̃ such that the balanced metrics (hk) associated to Ẽ converge
towards a weakly Hermite-Einstein metric and

(
π∗Ẽ

)∗∗ = E.

We now give a consequence of [Bu2, Proposition 2.4] (see also for de-
tails [Bu1]):
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Definition 4.1. Let F be a reflexive sheaf and F1 ⊂ F with F/F1 = F2.
We note Tor (F2) the torsion of F2. If F2 is torsion free, F1 is said to be
saturated; otherwise its saturation is Sat (F1,F) = ker(F → F2/Tor (F2)).

Lemma 4.0.5. Let E be a holomorphic vector bundle on a smooth projec-
tive surface. Consider the following filtration of E

0 = E0 ⊂ · · · ⊂ El = E

by saturated sheaves. Then, there exists a resolution M̃
π→ M consisting of

a blowup of a finite number of points and a filtration

0 = Ẽ0 ⊂ · · · ⊂ Ẽl = Ẽ

with
(
π∗Ẽ

)∗∗ = E and Ẽi = Sat
(
π∗Ei, Ẽ

)
is a subbundle of Ẽ.

For a blowup M̃
π→ M with Lπ := π−1 (x0) as exceptional divisor asso-

ciated, the metric π∗ω is positive and degenerates only along the tangent
directions to Lπ. Let FLπ

be the curvature form of any smooth hermitian
metric on the associated line bundle O (−Lπ). For δ > 0 sufficiently small,
ωδ = π∗ω + δFLπ

is a smooth closed definite positive (1, 1)-form. It is
with respect to this polarization ωδ that we will speak of stability on the
manifold M̃ . We obtain under this setting a generalization of Theorem 2.

Theorem 3. Let E be a holomorphic vector bundle on a smooth projective
surface. Then, there exists a resolution M̃

π→ M consisting of a blowup of
a finite number of points and a vector bundle Ẽ on M̃ such that for δ > 0
sufficiently small, and for all ε > 0, r ≥ 0, there exists a smooth hermitian
metric h̃ on Ẽ with ∥∥∥∥√−1ΛFeh −Πωδ,eh

HN( eE)

∥∥∥∥
Cr

< ε

and
(
π∗Ẽ

)∗∗ = E.

Proof. If the Harder-Narasimhan filtration is given by vector bundles, we
apply Theorem 1. Otherwise, we prove by induction on the rank. The
result is clear for rank 1. For r (E) > 1, we apply the previous lemma to
get a filtration Ẽi of Ẽ and for all ε > 0, Theorem 1 and the hypothesis of
induction allow us to find a hermitian metric h′i (ε) for Ẽi/Ẽi−1 such that∥∥∥∥√−1ΛFh′i(ε)

−Πωδ,h′i

HN
“fEi/Ẽi−1

”∥∥∥∥
Cr

< ε.

By considering the smooth metric h̃ = ⊕l
i=1h

′
i (ε), and by using the same

kind of argument that for Theorem 1, we can conclude.
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