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Abstract

The aim of this survey is to review the results of Phong-Sturm and
Berndtsson on the convergence of Bergman geodesics towards geodesic
segments in the space of positively curved metrics on an ample line
bundle. As previously shown by Mabuchi, Semmes and Donaldson
the latter geodesics may be described as solutions to the Dirichlet
problem for a homogeneous complex Monge-Ampère equation. We
emphasize in particular the relation between the convergence of the
Bergman geodesics and semi-classical asymptotics for Berezin-Toeplitz
quantization. Some extension to Wess-Zumino-Witten type equations
are also briefly discussed.

Introduction

Let L → X be an ample line bundle on a smooth projective manifold X of
complex dimension n and denote by H∞ the space of all (smooth) Hermitian
metrics h on L with positive curvature form. Fixing a reference metric h0

with curvature form ω0, any other metric may be written as hφ = e−φh0

with curvature form ωφ = ω0 +
√
−1∂∂̄φ, using the convention which makes

the curvature form a real 2−form. Hence, it will be convenient to make the
identification

H∞ = {φ ∈ C∞(X) : ωφ := ω0 +
√
−1∂∂̄φ > 0}

realizing H∞ as a subspace of the space of all, say continuous, ω0−psh func-
tions φ on X, i.e. ω0 +

√
−1∂∂̄φ ≥ 0 in the sense of currents. The space H∞

can be equipped with a Riemannian metric (Cf. the work of T. Mabuchi, S.
Semmes and S.K. Donaldson): for any tangent vector at φ, which may be
identified with a smooth function ψ on X

‖ψ‖2φ =
∫
X
|ψ|2ωnφ
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Hence one can speak, at least at the formal level, of geodesics in H∞. More-
over, the geodesic curvature c(t) = c(φt) is given by the expression

c(φt) = φ̈t − |∂̄xφ̇t|2ωφ (1)

which hence vanishes precisely when φt is a geodesic. By complexifying the
variable t, a geodesic φt connecting two elements in H∞ may be obtained by
solving the Dirichlet problem for a complex Monge-Ampère operator in the
(x, t)−variables (see section 1.1).

The previous setup extends immediately to the “transcendental” setting
where ω0 is any fixed Kähler form on a compact complex manifold X, i.e.
without assuming that 2πω0 is an integral class. Then H∞ is by definition
the open convex space in the cohomology class [ω0] consisting of all ω0-psh
functions.

On the other hand, when 2πω0 be an integer class, i.e. ω0 is the curvature
of a metric h0 on an ample line bundle L→ X, the setup may be “quantized”
as follows. For any given positive integer k, the infinite dimensional space
H∞ is replaced by a certain finite-dimensional symmetric space Hk : the
space of Bergman metrics at level k. By definition, these metrics are pull-
backs of Fubini-Study type metrics by the embeddings of the manifold into
the projective space PH0(Lk)∨ (Cf. section 1.3). A result of T.Bouche and
G. Tian asserts that any element φ in H∞ can be seen as a canonical limit
of a sequence of elements Pk(φ) in the spaces Hk. The symmetric spaces Hk
come equipped with an intrinsic Riemannian structure. In particular, any
two elements inHk may be connected by a unique Bergman geodesic (at level
k). Hence, it is natural to ask if the whole Bergman geodesic ψt connecting
Pk(φ0) and Pk(φ1) in Hk converges to the geodesic φt in H∞ when k tends
to infinity (and not only its end points)? The question was answered in the
affirmative by Phong-Sturm [PS06]. Their result was subsequently refined by
Berndtsson [Ber09b, Ber09c] (see also the very recent work [Ber09c]) using
a completely different approach.

The aim of the present notes is to survey these two latter results on
convergence of segments of Bergman geodesics. There is also a stronger
convergence result in the setting of toric varieties due to J. Song and S.
Zelditch that will not be discussed here. For a general introduction to the
circle of ideas in Kähler geometry surrounding all these results see the re-
cent survey [PS08]. Let us just briefly mention that an important feature
of Kähler geometry is that several important functionals (Lagrangians) on
H∞, whose critical points yield canonical Kähler metrics, turn out to be
convex along geodesics in H∞ and Hk. In particular, the use of geodesic
segments in Hk is underlying in Donaldson’s seminal work [Don01] to prove
uniqueness (up to automorphisms) of constant scalar curvature metrics in
H∞ (essentially by connecting any given two such metrics by a geodesic seg-
ment). On the other hand geodesic rays in Hk are closely related to the
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still unsolved existence problem for canonical Kähler metrics, the so-called
Yau-Tian-Donaldson conjecture. The point is to study “properness” i.e. the
growth of energy functional along the geodesic rays which turns out to be
related to algebro-geometric notions of stability (notably asymptotic Chow-
Mumford stability as conjectured by Yau [Yau87] long time ago).

The organization of the survey is as follows. We begin by briefly recalling
the “quantum formalism” as it offers a suggestive description of the results
to be discussed. Then the key steps in the proofs of first Phong-Sturm and
then Berndtsson’s results are indicated essentially following arguments in
the original papers. In section 2.2 it is explained how to deduce a slightly
weaker version of Berndtsson’s convergence result using asymptotic formulas
for products of Toeplitz operators. These formulas are well-known in the
context of Berezin-Toeplitz quantization of Kähler manifolds. This latter
approach is actually analytically far more involved than Berndtsson elegant
curvature estimate, but hopefully it may shed some new light on Berndtsson’s
convergence result and its relation to quantization. Some extension to Wess-
Zumino-Witten type equations are also briefly discussed in the last section.

The “quantum formalism”

The state space of a classical physical system is mathematically described
by a symplectic manifold X equipped with a symplectic form ω. An “observ-
able” on the state space (X,ω) is just a real-valued function on X. From this
point of view quantization is the art of associating a Hilbert space H(X,ω)
(the “quantum state space”) to (X,ω) and Hermitian operators on H(X,ω)
to real-valued function on X. Moreover, the quantizations should come in
families paremetrized by a small parameter h (“Planck’s constant”) and in
the limit h → 0 the classical setting should emerge from the quantum one,
in a suitable sense (the “correspondence principle”). One possibility to make
this latter principle more precise is to demand that the non-commutative
C∗−algebra of all (bounded) operators on H(X,ω) should induce a defor-
mation (in the parameter h) of the commutative C∗−algebra C∞(X,C) (this
is the subject of deformation quantization). See for example [AE05, Gut00]
for a general survey on quantization.

As shown by Berezin, Cahen, Gutt, Rawnsley and others any positively
curved metric φ on a line bundle L→ X induces a quantization with h = 1/k,
where k is a positive integer. If ω = ωφ the quantization (at level k) of (X,ωφ)
is obtained by letting H(X,ω) := H0(X,L⊗k) equipped with the Hermitian
metric Hilb(kφ) :

Hilbk(kφ)(s, s̄) =
∫
X
|s|2h0

e−kφ
ωnφ
n!
.

To any complex-valued function f one associates the Toeplitz operator T (k)
f

on H0(X,L⊗k) with symbol f . It is defined by the corresponding quadratic
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form on the Hilbert space H0(X,L⊗k) :〈
T

(k)
f s, s′

〉
kφ

:=
〈
fs, s′

〉
kφ
, (2)

In other words,

T
(k)
f = Pkf ·, Pk : C∞(X,L⊗k)→ H0(X,L⊗k),

where Pk is the orthogonal projection induced by the Hilbert space structure.
In particular, T (k)

f̄
= (T (k)

f )∗ and hence T (k)
f is Hermitian if f is real. It turns

out that there is an asymptotic expansion (in operator norm) [Eng02, Sch00,
MM07]

T
(k)
f T (k)

g − T (k)
fg =

1
k
T

(k)
c1(f,g) +

1
k2
T

(k)
c2(f,g) + .... (3)

where ci(f, g) is a bi-differential operator (where we have written out c0(f, g) =
fg. The corresponding formal induced star product on symbols: f ∗ g :=
fg + c1(f, g)h + ... is usually called the Berezin-Toeplitz star product. In
particular,

[T (k)
f , T (k)

g ] =
1
k
Tc1(f,g)−c1(g,f) +O(1/k2),

where c1(f, g)− c1(g, f) is the Poisson bracket on C∞(X,C) induced by the
symplectic form ω (compare with formula (25)). Moreover, if f is real-valued
and σ(T (k)

f ) denotes the spectrum of the operator T (k)
f , then

1
kn

∑
λ
(k)
i ∈σ(T

(k)
f )

δ
λ
(k)
i

→ f∗(ωφ)n/n! (4)

In particular, setting f = 1 and integrating over R gives the asymptotic
Riemann-Roch formula

Nk := dimH0(X,L⊗k) = kn
∫
X

ωnφ
n!

+O(kn−1) (5)

which is consistent with the “correspondence principle”, since it identifies
the leading asymptotics of the dimension of the quantum state space with
the volume of the classical phase space. All of these results may be de-
duced from the asymptotic properties of the Bergman kernel Kk(x, y), i.e.
the integral kernel of the orthogonal projection Pk. These asymptotics were
obtained by Catlin and Zelditch [Cat99, Zel98] using the micro-local anal-
ysis of Boutet de Monvel-Sjöstrand. There are by now several approaches
to these asymptotics; see the review article [Zel09] for an introduction and
references. In particular, there is an asymptotic expansion of the point-wise
norm ρ(kφ)(x) of Kk(x, x) (also called the “distortion function” or “density
of states function”):

k−nρ(kφ)(x) = (2π)−n(1 + k−1b1(x) + k−2b2(x) + ...) (6)
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which holds in the C∞−topology and where the coefficients bi depend poly-
nomially on φ and its derivatives. Finally, it should be pointed out that
twisting L⊗k with an Hermitian holomorphic line bundle L′ only has the
effect of changing the expression for the coefficients in the expansions above.

Acknowledgement: this survey is an expanded version of lectures given
by the first author at a workshop in Marseille in March 2009. We would like
to thank the organizers and all participants for a very inspiring time. Both
authors are very grateful to Bo Berndtsson for illuminating discussions.

1 The results of D.H. Phong and J. Sturm

1.1 The homogeneous Monge-Ampère equation and geodesics
in H∞

Given a smooth metric φ on L→ X its Monge-Ampère is the form (ωφ)n/n!
of maximal degree on X. In particular, MA(φ) ≥ 0 if φ has semi-positive
curvature, i.e. if ωφ ≥ 0. As shown in the seminal work of Bedford-Taylor
MA(φ) is naturally defined as (positive) measure for any φ which is locally
bounded with ωφ ≥ 0 in the sense of currents.

Given φ0, φ1 ∈ H∞ the geodesic φt from the introduction may be ob-
tained as follows from a complex point of view. Firstly, let us complexify the
variable t to take values in the strip [0, 1]+

√
−1[0, 2π] which we will identify,

as a complex manifold, with the closure of an annulus A in C. Then pull-back
φ0 and φ1 to S1−invariant functions on the boundary ofM := X×A. Pulling
back ω0 from X induces a semi-positive form π∗ω0 on M. Now denote by
Φ = φt(·) the function onM obtained as the unique solution of the following
Dirichlet problem: Φ ∈ C0(M), where Φ∂M coincides with the given data
above and

MA(x,t)Φ := (π∗ω0 +
√
−1∂∂̄Φ(x, t))n+1 = 0, (x, t) ∈M, (7)

with π∗ω0 +
√
−1∂∂̄Φ(x, t) ≥ 0. As shown by Chen [Che00] (see also [Blo09])

the solution Φ is unique and almost C2−smooth, in the sense that ∂∂̄Φ(x, t)
has locally bounded coefficients. Note that expanding gives the relation

MAx,t(Φ) = c(φt)(dt ∧ dt̄ ∧MAx(φt)), (8)

where c(φt) is the geodesic curvature in H∞ (compare with formula (1)).
Hence, if (i) φt is in C∞(X) and (ii) ∂t∂̄tφt > 0 for all t, then equation (7)
is equivalent to

c(φt) := φ̈t − |∂̄xφ̇t|2ωφ = 0 (9)

i.e. φt is a geodesic in n H∞. However, it should be pointed out that it is still
not known whether any of the two conditions above hold in general. Hence,
the “geodesic” φt obtained above is a path in the closure of H∞.
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Remark 1. The situation becomes considerably simpler in the toric setting,
i.e. when the real n−torus Tn acts with an open dense orbit on X and equiv-
ariantly on L→ X and H∞ is replaced by the space HTn∞ of all Tn−invariant
metrics. In this setting φ(x) may be represented by a convex function on
Rn
x. For any t we may consider the Legendre transform ψt(p) = φ∗t (p) of

φt(x) which is a convex function on the dual real vector space (Rn)∗. Then
equation (9) is equivalent to the equation

ψ̈t(p) = 0,

i.e. ψt is simply the affine interpolation of ψ0 and ψ1 [Gua99, Theorem 3].
An important conceptual feature of the fiber-wise Legendre transformation
is that the transform function ψt satisfies a differential equation depending
only on the t−variable.

1.2 A canonical functional

The measure valued operator φ 7→ MA(φ) on the space H∞ may, in the
standard way, be identified with a differential one-form MA on H∞, using
that H∞ is a convex subset of the affine space C∞(X). As observed by
Mabuchi this one-form is in fact exact [Mab87]. Equivalently, there exists a
functional E : H∞ → R (the “primitive” of MA) such that dE|φ = MA(φ) or
equivalently

d

dt
E(φt) =

∫
X

d

dt
φtMAx(φt). (10)

for any curve φt in H∞ (see [Aub84, Section III] and [Yau78, Section 2]). If
one imposes the normalization E(0) = 0 the functional E is hence uniquely
determined. Working now on X ×A, a direct computation shows that

∂t∂̄tE(Φ(x, t)) =
∫
t∈A

MAx,t(Φ), (11)

just using Leibniz rule and the relation (8). Hence, it follows directly from
the homogeneous Monge-Ampère equation (7) that the following proposition
holds:

Proposition 2. The following properties of the functional E hold:

• If φt is a geodesic in H∞, then E(Φ(., t)) is affine with respect to t real.

• If the metric Φ(z, t) on π∗L → X × A has semi-positive curvature,
then t 7→ E(Φ(., t)) is subharmonic with respect to t. Hence, E(Φ(., t))
is convex along geodesics.
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1.3 Quantification scheme

Let H0(kL) = H0(X,L⊗k) be the space of all global holomorphic sections
of kL := L⊗k over X. We will denote by Nk the dimension of this complex
vector space of finite dimension (since M is compact). Let Hk be the set of
all Hermitian metrics H on the vector space H0(kL), the Bergman space at
level k. The map A 7→ A∗A clearly yields an isomorphism

GL(Nk,C)/U(Nk) ' Hk (12)

turning Hk into a symmetric space. We can define two natural maps :

• ( “quantization”). The ‘Hilbert’ map

Hilbk : H∞ → Hk

such that
Hilbk(kφ)(s, s̄) =

∫
X
|s|2e−kφMA(φ).

• (“dequantization”). The injective map ‘Fubini-Study’,

FSk : Hk → H∞

such that

FSk(H) =
1
k

log(
Nk∑
i=1

|sHi |2h0
),

where (sHi ) is an H-orthonormal basis1 of holomorphic sections of
H0(kL).

We will often identify Hk with its image in H∞ under FSk and call it the
space of Bergman type metrics of order k. Geometrically, FSk(H) is just the
scaled pull-back of the Fubini-Study metric on O(1)→ PH0(kL), induced by
H under the Kodaira embedding x 7→ [sH1 (x) : ... : sHNk(x)]. More invariantly,
this is the natural “evaluation map” x 7→ PH0(kL)∨ composed with the
isomorphism between PH0(kL)∗ and PH0(kL) determined by H.

Next, we recall the following fundamental approximation result first proved
by Bouche [Bou90] and Tian [Tia90] (see [Rua98] for the issue of smooth con-
vergence).

Proposition 3. Let φ be an element in H∞, i.e. a smooth metric on L with
positive curvature. When k → ∞ the composed maps Pk := FSk ◦ Hilbk
approximate the identity. More precisely,

FSk ◦Hilbk(kφ)→ φ (13)

in the C∞−topology.
1note that this definition is independent of the choice of the basis.
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In fact, if φ is only assumed continuous then a simply approximation
arguments gives C0−convergence. The previous proposition is a direct con-
sequence of the leading asymptotics of ρ(kφ)(x) in (6) since

ρ(kφ)(x) :=
Nk∑
i=1

|sHilbk(kφ)
i (x)|2h0

e−kφ(x) = ekFSk(Hilbk(kφ))(x)e−kφ(x)

so that taking log, dividing by k and letting k →∞ proves the proposition.

1.4 Geodesics in the Bergman spaces

Let us fix k and let H0, H1 ∈ Hk be two Bergman metrics. By standard
linear algebra there exist numbers λi with 1 ≤ i ≤ Nk and bases (sH0

i ) and
(sH1
i ), orthonormal with respect to H0 and H1 respectively, such that

sH1
i = sH0

i eλi/2

The geodesic Ht in Hk (with respect to the Riemann structure induced by
the isomorphism (12)) between H0 and H1 may then be concretely obtained
in the following way: Ht is the Hermitian metric such that

sHti = sH0
i etλi/2

is Ht−orthonormal. We are now ready to state Phong and Sturm’s result

[PS06, PS05].

Theorem 4 (Phong-Sturm, 2005). Let φt be the unique C1,1 geodesic from
φ0 to φ1 in H∞. Let H(k)

t be a Bergman geodesic curve in Hk such that
H

(k)
0 = Hillbk(kφ0) and H(k)

1 = Hilbk(kφ1). Then Φ(k) := FSk(H
(k)
t ), iden-

tified with a metric over X ×A, satisfies

(sup
k≥l

Φ(k))∗usc → Φ

uniformly over X ×A as l→∞.
Here, one has defined the upper-envelope of a bounded function u : X ×

[0, 1]→ R, by setting

u∗usc(z) = lim
ε→0

sup
|z′−z|<ε

u(z′)

Recall that a sequence of plurisubharmonic functions uk which are locally
uniformly bounded, (supuk)∗usc is still plurisubharmonic and equal to supuk
almost everywhere. The proof of Phong-Sturm uses the result established
by Chen [Che00] concerning the existence and regularity of the geodesic Φ
in the (closure of) the space of Kähler potentials H∞. More precisely, it is
the C0−regularity of Φ which is needed (this fact immediately gives uniform
convergence in the theorem above, by Dini’s lemma). As recently observed in
[BD09] this latter regularity can also be obtained by adapting the approach
of Bedford-Taylor for pseudoconvex domains in Cn to the present situation.
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1.4.1 The proof of Theorem 4

We keep the notation Φ(k) := FSk(H(k)) for the metric over X ×A induced
by rotational symmetry from FSk(H

(k)
t ) on X. The two main ingredients in

the proof of Phong and Sturm are as follows. Firstly the following uniform
estimate in k on X ×A : ∣∣∣∣ ∂∂tΦ(k)

∣∣∣∣ ≤ C (14)

Secondly, the “volume estimate”

MAx,t(Φ(k))→ 0. (15)

weekly on the interiour of X × A. The estimate (14) is used to control the
boundary behaviour of Φ(k) (by Proposition 3, convergence towards Φ at
the boundary is already clear). Moreover, from the convergence (15), any
limit point of Φ(k) satisfies the homogeneous Monge-Ampère equation in the
interior of X × A. By adapting the pluripotential results of Bedford-Taylor
for pseudoconvex domains in Cn to the their situation, Phong-Sturm finally
conclude the proof of Theorem 4. Finally, the last difficulty is to establish a
suitable uniqueness result for “rough” solutions of the Dirichlet problem (7).

The proof of (14) uses the explicit formula

∂

∂t
Φ(k) =

Nk∑
j=1

λj |s
Hk
t

j |
2e−FSk(Hk

t )

to reduce the estimate to a uniform bound on 2
k max |λj | (see [PS06, Lemma

1]). Note that the upper bound in (14) (without the absolute values) is a
direct consequence of the convexity of the map t 7→ Φ(k) for t real, combined
with the uniform bounds at the end points t = 0, 1 furnished by Proposition
3.

Now, the estimate (15) can be proved by first noting that, by the second
point in Proposition 2, it is a consequence of the fact that∫

X×A
MAx,t(Φ(k))→ 0 (16)

when k →∞. But one has by (10) and (11),∫
X×A

MAx,t(Φ(k)) =
∫
X

∂Φ(k)

∂t |t=1
MA((Φ(k)

t=1))

−
∫
X

∂Φ(k)

∂t |t=0
MA(Φ(k)

t=0). (17)
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If we let ωφ = ω +
√
−1∂∂̄φ, we can write

∫
X

∂Φ(k)

∂t |t=1
MA(FSk(Φ

(k)
t=1)) =

1
k

∫
X

Nk∑
j=1

λj |s
Hk

1
j |

2e−FSk(Hk
1 )MA(FSk(H

(k)
1 ))

=
1
k

∫
X

Nk∑
j=1

λj |s
Hk

1
j |

2e−kφ1
e−kFSk(Hk

1 )

e−φ1

MA(FSk(H
(k)
1 ))

ωnφ1

ωnφ1
.

But for i = 0, 1, Proposition 3 gives

MAx(FSk(H
(k)
i ))

(ω +
√
−1∂∂̄φi)n

= 1 +O(1/k),
e−FSk(Hk

i )

e−φi
= 1 +O(1/k).

Combining this with the bound (14) gives∫
X

∂Φ(k)

∂t |t=1
MA(FSk(Φ

(k)
t=1)) =

1
k

Nk∑
j=1

∫
X
λj |sHilbk(e−kφ1 )

j |2e−kφ1ωnφ1

+O
(

1
k

)
=

1
k

∑
j=1

λj +O

(
1
k

)
.

Repeating the argument for t = 0 also gives∫
X

∂Φ(k)

∂t |t=0
MA(FSk(Φ

(k)
t=1)) =

1
k

∑
j=1

λj +O

(
1
k

)
.

All in all this proves (16) and hence finishes the proof of (15).

2 The results of B. Berndtsson

In [Ber09b], B. Berndtsson develops a different approach that we discuss
now. He considers not the spaces H0(kL) but instead the spaces H0(kL +
KX) of all holomorphic n−forms with values in kL. We now redefine Nk =
dimH0(X, kL+KX) and

Hk = {smooth hermitian metrics on H0(kL+KX)},

and also
Hilbk : H∞ → Hk

by

Hilbk(kφ)(s, s̄) =
∫
X
|s|2he−kφdz ∧ dz̄.
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A technical difficulty is to redefine the Fubini-Study map FSk : Hk → H∞
in this setting. We are lead to tensorize 1

k log(
∑
|SHi |2), seen as a metric

over L+ 1
kKX , by a metric from − 1

kKX . This later metric is fixed a priori,
and we will hence be able to control it uniformly when k → +∞. Finally,
we continue to denote H(k)(t) = H

(k)
t the Bergman geodesic in Hk between

H
(k)
0 and H(k)

1 defined as in the previous section.
As it turns out the introduction of the canonical line bundle in the Bergman
space will considerably simplify the estimates. The reason is that the corre-
sponding L2−estimates for the ∂̄−equation of Hörmander and Kodaira are
sharp in this setting.

Theorem 5 (Berndtsson, 2006). , Given two metrics φ0, φ1 ∈ H∞, there
exists Φ = φt ∈ C0(X × A) such that FSk(H(k)) → Φ in the C0(X × A)
topology. More precisely,

sup
X×A

|FSk(H(k))− Φ| ≤ C log k/k

Moreover,
Φ = sup

Ψ
{Ψ : Ψ ≤ Φ on ∂(X ×A)}, (18)

where the sup is taken over all strictly positively curved smooth metrics Ψ on
the pulled back line bundle π∗L→ X ×A.

As very recently shown by Berndtsson in [Ber09c] a simple modification
of the proof of Theorem 5 shows that it is more generally valid for kL + L′

where L′ is any Hermitian holomorphic line bundle equipped with a smooth
metric (possibly depending on φ). In particular, it applies to the setting of
Phong-Sturm. For simplicity we will mainly stick to the case of kL+KX .

Remark 6. The relation to continuous geodesics or more precisely contin-
uous solutions of the Dirichlet problem (7) is not explicitly discussed in
[Ber09b], but is essentially well-known for any manifold M with boundary
(here M := X × A). Indeed, by using a family version of Richberg’s classi-
cal approximation result, the sup defining Φ may be taken over all Ψ which
are merely continuous (and with semi-positive curvature current). Then, by
solving local Dirichlet problems on any small ball in the interior of M , one
sees that MA(Φ) = 0 in the interior of M , by following Bedford-Taylor.
Conversely, any continuous solution of the global Dirichlet problem on M is
necessarily maximal inM by the maximum principle for the Monge-Ampère
operator:

Φ ≥ Ψ on ∂M ⇒ Φ ≥ Ψ on M

if Ψ is continuous with semi-positive curvature (this part is elementary and
proved exactly as in the Cn−setting, see for example Lemma 3.7.2 in [Kli91]).
In particular, the solution is unique and of the form (18). It should be pointed
out that, as opposed to Phong-Sturm’s proof, the proof of Berndtsson does
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not rely on any regularity results concerning the solution of the Dirichlet
problem (7). In fact, it gives a new interesting “constructive” proof of the
C0−regularity in this setting.

The key point in the proof of Berndtsson’s theorem is the following “quan-
tized maximum principle” that we shall explain in Section 2.1.1.

Proposition 7 (Quantized maximum principle). If ψt is plurisubharmonic
on X × A and if Hilbk(kψt) ≥ H

(k)
t for t ∈ ∂A with H(k)

t geodesic in Hk,
then

Hilbk(kψt) ≥ H
(k)
t

for all t ∈ A.

We explain now how Proposition 7 implies the convergence of the se-
quence of Bergman geodesics. We set φ(k)

t = FSk(H
(k)
t ) which is positively

curved over X ×A, as follows immediately from its explicit expression. Let
us show that the following two inequalities hold:

φ
(k)
t ≤ φt +O(log k/k), (19)

φt ≤ φ(k)
t +O(1/k). (20)

For (19), we notice that on ∂(X ×A), Proposition 3 gives

φ
(k)
t := FSk(H

(k)
t ) = FSk(Hilbk(kφi)) ≤ φi +O(log k/k)

with i = 0 or i = 1. Now, from the extremal definition of φt, we get (19) on
all of X × A, using that FSk(H

(k)
t ) has semi-positive curvature as a metric

over X ×A. Note that the upper bound O(log k/k) is actually sharp.
For (20), we will now use Proposition 7. On ∂(X×A), sinceHilbk(kφ(., t)) =

H
(k)
t , and because any given candidate Ψ for the sup defining Φ is positively

curved over X ×A, we obtain on all of X ×A,

Hilbk(kΨ) ≥ H(k)
t .

which implies
FSk(Hilbk(kΨ)) ≤ φ(k)

t .

Finally, we obtain (20) if we can prove that for any smooth metric ψ on L
with semi-positive curvature form

ψ ≤ FSk(kψ) +
c

k
(21)

with a uniform constant c independent of ψ. This estimate is a well-known
consequence of the celebrated Ohsawa-Takegoshi theorem. We briefly recall
a weak version of this latter result in the following
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Proposition 8 (Ohsawa-Takegoshi). Let L → X be an ample line bundle,
ψ a smooth metric on L such that ωψ ≥ 0 and fix x ∈ X. Then, for any
k >> 0, there exists a holomorphic section sk ∈ H0(kL + KX) such that
|sk(x)|2kψ = 1 and

∫
X |sk|

2
kψω

n ≤ C with C independent of ψ , x and sk.

The estimate (21) comes by using that

FSk(Hilbk(kψ))(x)− ψ ≥ 1
k

log

(
|sk(x)|2kψ∫
X |sk|

2
kψω

n

)
for any section sk and in particular for the one, depending on x, furnished
by the proposition.

2.1 Curvature of direct image bundles

We will next turn to the proof of the crucial “quantified” maximum principle
of Berndtsson. The starting point of its proof is the following geometric
description of a geodesic H(k)

t in Hk. It may be suggestively described in the
“quantization” terminology. A curve φt ∈ H∞ gives rise to a familly (X,ωφt)
of Kähler manifolds fibred over [0, 1]t. Its quantization is hence a family of
Hermitian vector spaces (H0(kL+KX), Hilbk(kφt)) fibred over [0, 1]t. This
is equivalent to say that, by complexifying the parameter t so that it lives in
the disk annulus A of C, we arrive at the following suggestive statement: the
quantization of a curve φt in H∞ is a holomorphic Hermitian vector bundle
(E,H) over A, which is holomorphically isomorphic to H0(kL+KX)×A.

Similarly, any curve Ht ∈ Hk gives rise to a vector bundle (E,H) over
A. As observed by Berndtsson Ht is a geodesic in Hk precisely when the
curvature ΘE(H) of the vector bundle vanishes,

ΘE(H) = 0 ∈ End(E).

Recall the following general definition of curvature [GH94]: If Ht is a family
of Hermitian matrices locally representing an Hermitian metric on a holo-
morphic vector bundle E → A, then the (Chern) connection form θ(Ht) is
the following local matrix valued (0, 1)−form on A :

θ(Ht) = −H−1
t ∂tH

Its curvature (which in our convention is “real”) is the following local matrix
valued real (1, 1)−form on A :

ΘE(H) = ΘE(Ht) =
√
−1∂̄tθ(Ht) = −

√
−1∂̄t(H−1

t ∂tH)

defining a global (1, 1)-form on A with values in End(E). In our case the base
A is one-dimensional and E is holomorphically trivial with fiber H0(kL +
KX). Hence we may and will identify ΘE(Ht) with an Hermitian operator
on H0(kL+KX) for any t ∈ A.

We next state a fundamental result of B. Berndtsson [Ber09b] about the
curvature of the vector bundle obtained by quantizing a curve φt in H∞.

13



Theorem 9. If Ψ is a metric on π∗L→ X×A such that ψt := Ψt(·) ∈ H∞,
then

〈
√
−1ΘE (Hilbk(kψt)) s, s〉 ≥ k〈c(ψt)s, s〉

in terms of the geodesic curvature c(ψt) of ψt (compare with formula (8))
and where the inner product is with respect to Hilbk(kψt). In particular, if
Ψ is positively curved over X ×A then

√
−1ΘE(Hilbk(kψt)) ≥ 0

as an Hermitian form.

2.1.1 The proof of Theorem 9

The proof of Berndtsson theorem2 takes advantage of the fact that the
hermitian holomorphic vector bundle E over A is a subbundle of the (in-
finite dimensional) hermitian holomorphic vector bundle F, where Ft :=
C∞(X, kL + KX) whose fiber at t consist of all smooth sections. If one
endows F with the holomorphic structure defined by the operator ∂̄t (the
∂̄−operator along the base) then E clearly becomes an Hermitian holomor-
phic subbundle of F. A simple calculation gives the connection “matrix” (i.e.
a linear operator)

(θF )t := −∂Ψ
∂t

= −ut·, ut := ψ̇t

Moreover, well-known formulas for induced connections on holomorphic sub-
bundles (see p. 78 in [GH94]) give

(θF )t = Pt(θE) = −T (k)
ut ,

where Pt is the orthogonal projection Ft → Et, using the notation of Toeplitz
operators in the introduction. Moreover, the curvature on the subbundle E
may be expressed as (see [GH94])

ΘE = PΘF −B(u)∗B(u) =|t Pt(u̇t·)−B(ut)∗B(ut) (22)

where B(u) is the linear operator (“second fundamental form”) B(ut)s =
uts − Pt(uts). We next formulate the key estimate of Berndtsson in the
following result.

Lemma 10. The following inequality holds for any smooth function u and
smooth metric ψ on L with positive curvature:

〈B(u)∗B(u)s, s〉kψ ≥
〈
|∂̄xu|2ωψs, s

〉
kψ

for all s ∈ H0(X, kL+KX).
2and in particular the proof of the more general curvature estimate in [Ber09b].
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Proof. First note that

〈B∗Bs, s〉t = 〈Bs,Bs〉t := ‖us− P (us)‖2t

But since P is the orthogonal projection onto the kernel of ∂̄x, the smooth
section v := us − P (us) of kL + KX is the element with minimal norm of
the following inhomogeneous ∂̄-equation

∂̄xv = ∂̄x(us).

Hence, by the L2−estimates of Hörmander-Kodaira

‖v‖2kψ ≤
∥∥∂̄x(su)

∥∥2

kψ,ωψ

where ∂̄x(su) is an (n, 1)−form with values in kL and where ωψ is used to
measure the (0, 1)−part in the usual way.

To conclude the proof of Theorem 9 recall that ut = ψ̇t. Hence formula
(22) combined with the previous lemma proves the first statement of Theo-
rem since c(ψt) = ψ̈t − |∂̄xψ̇t|2ωψ .

The proof of Proposition 7, is now a direct consequence of Theorem 9
and the following lemma (compare with [CS93]).

Lemma 11. Let E be a holomorphic vector bundle on a smooth domain D
in C and let H0, H1 be two hermitian metrics on E that extend continuously
to D. Assume that the curvature of H0 is flat and the curvature of H1 is
semi-positive. If, H0 ≤ H1 on ∂D, then H0 ≤ H1 in D.

Proof. For the sake of completeness we give a simple proof of the lemma,
which was explained to us by Bo Berndtsson. As is well-known E is holo-
morphically trivial on D (anyway we will only apply the lemma to a trivial
bundle). We fix a global trivialization of E. Let s be a given global holomor-
phic section of E over D. By the usual maximum principle for the Laplace
operator it will be enough to prove the following claim: |s|2H0

−|s|2H1
is a sub-

harmonic function on D. To this end we will use the following basic formula,
which follows from an application of Leibniz rule,

∂2

∂t∂t̄
(|s|2H) = −

√
−1 〈ΘHs, s〉H +

〈
D1,0
H s,D1,0

H s
〉
H
,

where D1,0
H = ∂

∂t − θ(H), is the (1, 0)−component of the Chern connection
determined by H. Now, as it is well-known, for any given fixed point t ∈ D
we can always assume that D1,0

H1
s = 0 at t, after perhaps performing a gauge

transformation, i.e. after replacing s with gs and H1 by gH1g
−1, where g is

a holomorphic function on D (depending on the fixed point t) with values
in the space of invertible matrices. Since, |s|2H and the curvature ΘH are
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invariant under gauge transformations the previous formula gives, at the
fixed point t,

∂2

∂t∂t̄
(|s|2H0

− |s|2H1
) = −

√
−1 〈ΘH0s, s〉H0

+
〈
D1,0
H0
s,D1,0

H0
s
〉
H0

+
√
−1 〈ΘH1s, s〉H1

+ 0

≥ 0,

using the curvature assumptions. Since the point t was arbitrary this finally
proves the claim above and hence finishes the proof of the lemma.

2.2 Concluding remarks

2.2.1 The correspondence principle and curvature asymptotics

In the spirit of the “correspondence principle” referred to in the introduction,
one may rewrite the lower bound in Theorem 9 as the inequality

√
−1ΘE (Hilbk(kψt)) ≥ T (k)

c(ψt)
(23)

between two Hermitian operators on H0(X, kL+KX), i.e. “the quantization
of the geodesic curvature of a curve φt is always smaller than the curvature
of the quantization of φt”! (see the discussion in [Ber09a]).

In fact, using essentially well-known asymptotic formulas one can show
that one obtains an equality in (23), up to lower order terms in “Planck’s
constant” h = 1/k. To see this first note that a simple computation gives,
with notation as in Lemma 10, the following expression in terms of Toeplitz
operators:

−B(u)∗B(u) = (T (k)
u )2 − T (k)

u2

Now we can use the asymptotic expansion from the introduction:

T
(k)
f T (k)

g − T (k)
fg =

1
k
T

(k)
c1(f,g) +O(

1
k2

) (24)

in operator norm, with the explicit formula

c1(f, g) =
√
−1(∂f ∧ ∂̄g ∧ ωn−1

φ )/ωnφ . (25)

(this follows for example from explicit formula for cBT1 in [Eng02]). Setting
f = g = u shows that (23) is an asymptotic equality, i.e.

k−1
√
−1Θ (Hilbk(kψt)) = Tc(ψt) +O(1/k) (26)

in operator norm. In particular,
√
−1Θ(Hilbk(kψt)) > 0 for k > k0 if Ψ is

smooth with strictly positive curvature (where k0 depends on Ψ). Hence, the
previous asymptotics could be used as a substitute for the curvature estimate
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in Theorem 9 and in the proof3 of Theorem 5. Since the asymptotics (24)
are still valid with the same formula for c1(f, g) when kL is twisted by
a Hermitian holomorphic line bundle L′ this argument also gives uniform
convergence in the setting of Phong-Sturm.

Note also that, combined with the asymptotics (4) for spectral measures,
(26) implies the spectral asymptotics

1
kn

∑
i

δ
λ
(k)
i

→ c(ψt)∗(ωφ)n/n!

converging in the weak star topology of measures, summing over all eigen-
values of the curvature

√
−1Θ (Hilbk(kψt)) . It should also be pointed out

that asymptotics for curvature operators on very general direct image bun-
dles have been announced by Ma-Zhang in [MZ07] (without explicitly using
the relation to Toeplitz operator asymptotics).

2.2.2 Wess-Zumino-Witten type equations

It may be of some interest to point of that the proof of Theorem 5 extends
almost word for word to the case when the geodesic is replaced by a solution
to certain Wess-Zumino-Witten type equations (see [Don99] for the relation
between geodesics and Wess-Zumino-Witten type equations). To setup the
problem first consider the following generalization of the Dirichlet problem
(7). Let us replace the annulus A with a general smooth domain D in C
and let us assume given a continuous function Φ = φt(x) on ∂D such that
φt ∈ H∞ for all t ∈ ∂D. Then there is a unique continuous extension of Φ
to D such that

MAx,t(Φ) = 0, (t, x) ∈ X ×D (27)

with π∗ω0 +
√
−1∂∂̄Φ ≥ 0 on X ×D [Che00, BD09]. There is also a “quan-

tized” version of this problem where one assumes given a continuous family
H = Ht ∈ Hk for t ∈ ∂D. Then there exists a unique continuous extension
of H from ∂D to a flat metric on E → D, i.e. such that

ΘE(H)t = 0 ∈ End(E) ∀t ∈ D

[CS93, Don92]. When D is the unit-disc this amounts to classical results of
Birkhoff, Grothendieck, Wiener and Masni. Note that this latter equation
is a Laplace type PDE in t for a matrix Ht, which is quadratic in the first
derivatives of Ht. Now the proof of Theorem 5 may be repeated essentially
word for word, showing that the FSk-images of the flat extensions of H(k)

t :=
Hilbk(kφt) converge in the large k limit uniformly on X ×D to a solution
Φ of the Dirichlet problem (27) on X ×D. The only new ingredient needed
is the observation that Φ(k) := FSk(H

(k)
t ) still satisfy the condition π∗ω0 +

3at least to get uniform convergence, but without the explicit rate of convergence.
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√
−1∂∂̄Φ(k) ≥ 0 on X×D. To see this, first recall the following general fact.

The curvature ΘE(H)t is semi-positive over D precisely when log ‖s∗‖2H∗t
is plurisubharmonic in (t, s∗) on the total space of the dual bundle E∗ −
{0}, where H∗t denotes the fiber-wise dual Hermitian metric4. Moreover, by
definition

FSk(Ht)(x) := log ‖Λx‖2H∗t ⊗h∗0 ,

where Λx is the holomorphic section of E∗ ⊗ L∗x naturally induced by the
pointwise evaluation functional evx : H0(L)→ Lx. In particular, FSk(Ht)(x)
is π∗ω0−psh on D ×X proving the observation above.

Finally, it seems natural to ask how to approximate solutions to the
Dirichlet problem (27) when D is a domain in Cm for m > 1 ? As is it
well-known one has also to impose the condition that D is pseudoconvex in
order to get a continuous solution [BD09]. The model case is when D is the
unit ball. This leads one to look for a Monge-Ampère type equation for a
metric H on a holomorphic vector bundle E → D over an m−dimensional
base. As it turns out, some of the results above do generalize to this higher
dimensional setting. Details will hopefully appear elsewhere in the future.
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