
On Iteration of the Ricci Operator
on the Space of Kähler Metrics

Abstract. In this note we consider iteration on the c1 class of a Fano manifold using the
Ricci operator. Motivated by a problem posed by Nadel we define negative powers of the
Ricci operator and demonstrate that while orbits of positive powers have no limit points,
orbits of negative powers converge in C∞ precisely when the manifold is Kähler-Einstein and
in that case the set of limits coincides with the set of Kähler-Einstein metrics. Our work is
closely related to the study of energy functionals on the space of Kähler metrics and we show
how it can be used to simplify the proof of some of the results of Song and Weinkove.
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Let M be a compact closed Kähler manifold of complex dimension n with positive first
Chern class c1(M). For any Kähler metric g we let ω := ωg =

√
−1gij̄(z)dzi ∧ dz̄j denote

its corresponding Kähler form, a closed positive (1,1)-form on M . The motivation for this
note comes from a problem posed by Nadel, later investigated by the first author [K]. In a
short note [N] Nadel considers iteration on the space Hc1(M) of Kähler metrics cohomologous

to c1(M), defined inductively using the Ricci operator as follows. Let H(0)
c1(M) denote the

set of all smooth forms in the c1(M) class and let Ric(0) := I be the identity operator. For
any Kähler metric we let Ric (ω) = −

√
−1∂∂̄ log det(gij̄) denote the Ricci form of ω. It is

well-defined globally and lies again in the c1(M) class. If it is positive we let Ric(2)(w) denote
its Ricci form, and in a similar fashion we define higher powers of the operator as long as the

positivity is preserved. If we let H(k)
c1(M) denote the maximal domain of definition of Ric(k),

we obtain a filtration of H(0)
c1(M). We also let H(k)

c1(M) denote the set of all metrics in H(k−1)
c1(M)

whose Ricci curvature is nonnegative. The motivation for this construction comes from the
simple fact that, when they exist, Kähler-Einstein metrics are by definition fixed points of
the iteration process. Nadel asks whether these are all periodic points and proves in that
direction the absence of periodic points of order two and three. Furthermore he raised the
question whether Kähler-Einstein metrics could be related to higher order periodic points of
this iteration. Using an inequality on Monge-Ampère masses (also proved independently by
Blocki [Bl1]), the first author obtained the

Theorem 1.1. [K] Let (M, ω) be as above and assume that Ric(k)(ω) = ω for some k ∈ N.
Then ω is Kähler-Einstein.

The nonexistence of periodic points motivates a natural reinterpretation of Nadel’s orig-
inal second question to include limit points as periodic points of infinite order. The purpose
of this paper is to address this question.

To that end we generalize Nadel’s iteration scheme to include negative powers (defined in
Section 2 below). We then prove that the iteration process of Nadel has no non-trivial limit
points, while, in contrast, the orbits of the modified dynamical system converge if and only if
a Kähler-Einstein metric exists, and that the limit (when it exists) is a Kähler-Einstein metric
(Theorem 2.1). This shows that indeed the behavior of the dynamical system is closely tied
with the existence of Kähler-Einstein metrics and hence with the complex structure of M
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and answers Nadel’s second question. Our proof also demonstrates the nonexistence of fixed
points. The proof makes use of Mabuchi’s K-energy functional and the work of Bando and
Mabuchi [BM],[B]. We then remark that the result of this note can be used to simplify the
proofs of two of the main theorems in the work of Song and Weinkove [SW] on the Chen-Tian
energy functionals, a collection of functionals which include the K-energy [CT]. The requisite
background material and results on the various energy functionals is collected in Section 3
and the proof of Theorem 2.1 and some of its immediate applications are given in Section 4.
We conclude with some remarks and further questions for future study.
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The key observation of this note lies in the fact that Nadel’s construction can be reversed.
Let α be any form representing the c1(M) class. By the Calabi-Yau (C-Y) Theorem [Y] there
exists a unique Kähler form in Hc1(M), which we denote by ω1, whose Ricci form equals

α. We define the inverse Ricci operator by Ric(−1)(α) := ω1. Similarly we define higher

powers Ric(−k) := Ric(−1) ◦ · · · ◦Ric(−1), making repeated use of the powerful C-Y Theorem.
The advantage of this construction lies in the fact that iterations improve the positivity of

α. Indeed, if we consider the filtration {H(j)
c1(M)}j≥0 to measure positivity in some sense

then the image of Ric(−k) lies in H(k)
c1(M) and we may iterate the inverse Ricci operator to

any desired power. Note that this yields homeomorphisms Ric(k) : (H(l)
c1(M), || · ||Cm,β ) →

(H(l+k)
c1(M), || · ||Cm−2k,β ) for all β ∈ (0, 1), m, l ∈ N∪ {0}, k ∈ Z such that l + k ≥ 0 and m ≥ 2k.

We let H(∞)
c1(M) denote the set of all L∞(M) limits limk→∞ Ric(−k)α, for α ∈ H(0)

c1(M) (when

they exist). Let E ⊆ Hc1(M) denote the set of Kähler-Einstein metrics (possibly empty). The
result we wish to present in this note is the following

Theorem 2.1. Let (M, ω) be a compact closed Kähler manifold with [ω] = c1(M).

(i) Suppose that Ric(k)(ω) = ω for some k ∈ Z. Then ω is a Kähler-Einstein metric.

(ii) In general, H(∞)
c1(M) = E.

(iii) In contrast, there are no limit points for iterations of positive powers of Ric .

Therefore one may view the Kähler-Einstein condition as equivalent to the existence of
a contraction on the space of smooth Kähler potentials defined up to a constant. In order
to prove such a statement it is natural to seek for a sort of norm which is decreased along
the orbits in this function space. Indeed the proof makes use of such a functional, which we
introduce in the next section.
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We call a function A : Hc1(M) × Hc1(M) → R an energy functional if it is zero on
the diagonal. By an exact energy functional we will mean one which satisfies in addition
A(ω1, ω2) + A(ω2, ω3) = A(ω1, ω3) (the coycle condition after Mabuchi [M]).

Let V :=
∫

M
ωn = [ω]n([M ]) and let ||ϕ||2W 1,2(M,w) := |ϕ|2W 1,2(M,w) + |ϕ|2L2(M,w) where

|ϕ|2W 1,2(M,w) := V −1
∫

M

√
−1∂ϕ ∧ ∂̄ϕ ∧ ωn−1 and |ϕ|2L2(M,w) := V −1

∫

M
ϕ2ωn. The energy

functionals I, J , introduced by Aubin in [A2], are defined for each pair (ω, ωϕ := ω+
√
−1∂∂̄ϕ)
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by

I(ω, ωϕ) = V −1

∫

M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1
∑

i=0

ωi ∧ ωn−1−i
ϕ ,

J(ω, ωϕ) =
V −1

n + 1

∫

M

√
−1∂ϕ ∧ ∂̄ϕ ∧

n−1
∑

i=0

(n − i)ωi ∧ ωn−1−i
ϕ .

Note that I, J and I − J are all nonnegative and equivalent. In particular, (I − J)(ω, ωϕ) ≥
C|ϕ|2W 1,2(M,ω) for some C = C(n) > 0.

The Chen-Tian energy functionals Ek , k = 0, . . . , n, are defined as follows. Connect each
pair (ω, ωϕ1

:= ω +
√
−1∂∂̄ϕ1) with a piecewise smooth path {ωϕt

} and put

Ek(ω, ωϕ1
) = (k + 1)V −1

∫

M×[0,1]

∆ϕt
ϕ̇tRic (ωϕt

)k ∧ ωn−k
ϕt

∧ dt

− (n − k)V −1

∫

M×[0,1]

ϕ̇t(Ric (ωϕt
)k+1 − µkωk+1

ϕt
) ∧ ωn−1−k

ϕt
∧ dt, (1)

where µk := c1(M)k+1∪[ω]n−k−1([M ])
[ω]n([M ]) . This gives rise to well-defined exact energy functionals

independent of the choice of path [CT]. The K-energy, E0, was introduced by Mabuchi [M].
The importance of those functionals lies in the fact that they integrate the generalized Futaki
invariants Fk : h(M) → R defined on the Lie algebra of holomorphic vector fields h(M) and
that the non-vanishing of those invariants is an obstruction to the existence of Kähler-Einstein
metrics on Fano manifolds, as first proved by Mabuchi for k = 0 [M] and by Chen and Tian
for all k [CT]. This implies that Ek vanishes on pairs joined by a one parameter subgroup of
automorphisms through the identity [CT, Corollary 5.5].

Bando and Mabuchi proved the following

Theorem 3.1. [BM, Theorem A],[B, Theorem 1] Given a Kähler-Einstein metric ωKE ∈
Hc1(M), one has E0(ωKE, ω) ≥ 0 for all ω ∈ Hc1(M) with equality if and only if ω is Kähler-
Einstein and in that case there exists a holomorphic automorphism homotopic to the identity
h such that h?ωKE = ω.

The proof relies on showing that E0 is (strictly) monotonically decreasing along a certain
well-chosen deformation path ending at ωKE . The deformation {ωϕt

} ⊆ Hc1(M) chosen is
constructed from two paths, solutions of the following Monge-Ampère equations

ωn
ϕt

=

{

etf+ctωn, t ∈ [0, 1]

ef−(t−1)ϕtωn, t ∈ [1, 2]
(2)

where Ric ω − ω =
√
−1∂∂̄f with the normalizations

∫

M
etf+ctωn =

∫

M
ef−(t−1)ϕtωn = V .

The theorem then follows from

Proposition 3.2. One has

d

dt
E0(ωKE, ωϕt

) =

{−(1 − t)V −1
∫

M
(∆ωϕt

ϕ̇t)
2ωn

ϕt
− d

dt
(I − J)(ω, ωϕt

), t ∈ [0, 1]

−(2 − t) d
dt

(I − J)(ωKE, ωϕt
), t ∈ [1, 2]

(3)

from which the Theorem follows. Note that the first path is the one used in Yau’s

continuity method proof [Y]. It connects any point ω in Hc1(M) to Ric(−1)ω in H(2)
c1(M). The
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second path, introduced by Aubin in [A2], is used to connect any point in H(2)
c1(M) to a

Kähler-Einstein metric.
We now state two of the main results in [SW] on the boundedness of the Ek functionals

on the c1 class of Fano manifolds. The first establishes their partial boundedness.

Theorem 3.3. [SW, Theorem 1.1] Let M be as above. If M admits a Kähler-Einstein

metric ωKE then for any ω ∈ H(2)
c1(M) and for each k = 0, . . . , n one has Ek(ωKE, ω) ≥ 0, with

equality if and only if ω is Kähler-Einstein.

Their proof analyzes the behavior of Ek along the second path. A delicate point arises
here since while the solution for the Monge-Ampère equation always exists at t = 2 it may
fail to extend to a path even for nearby t when M admits non-trivial holomorphic vector
fields. This lies at the heart of the work of Bando and Mabuchi [BM]. Therefore in order to
complete their proof of Theorem 3.2, Song and Weinknove rely on a careful approximation
result from [BM] needed in order to circumvent this difficulty. Then they carry out a detailed
computation showing that while Ek may not necessarily be monotone (when the path exists),
one still has Ek(ωKE, ωϕ1

) ≥ Ek(ωKE, ωϕ2
) = 0.

Their second theorem is a strengthening of the above for the case k = 1 providing the
analogue of Theorem 3.1 for E1.

Theorem 3.4. [SW, Theorem 1.2] Let M be as above. If M admits a Kähler-Einstein
metric ωKE then for any ω ∈ Hc1(M) one has E1(ωKE, ω) ≥ 0, with equality if and only if ω is
Kähler-Einstein.

Their proof makes use of Theorem 3.2 together with an analogous calculation for the
first path showing that similarly to the second path one has E1(ωϕ1

, ω) ≥ E1(ω0, ω) = 0.
Explicitly, their computation shows that

Ek(ωϕ1
, ω) =V −1

∫

M

√
−1∂ϕ1 ∧ ∂̄ϕ1 ∧

n−1
∑

i=0

aiω
i ∧ ωn−1−i

ϕ1

+ (k + 1)V −1

∫

M×[0,1]

(1 − t)(∆ωϕt
ϕ̇t)

2ωn
ϕt
∧ dt

− V −1

∫

M

k
∑

i=1

(

i + 1

k + 1

)

f(
√
−1∂∂̄f)i ∧ ωn−i, (4)

with ai =







(n−k)(i+1)
n+1 , 0 ≤ i ≤ k − 1

(k+1)(n−i)
n+1 , k ≤ i ≤ n

. Since the last term is positive on Hc1(M) for k = 1

they conclude their proof.
Later we will make use of the following observation.

Lemma 3.5. For all ω ∈ H(2)
c1(M) and for all k = 0, . . . , n, Ek(ωϕ1

, ω) ≥ 0 with equality if

and only if ω is Kähler-Einstein.

Proof. From the definition of f it follows that

k
∑

i=1

(

k + 1

i + 1

)

(
√
−1∂∂̄f)i−1 ∧ ωn−i =

k
∑

i=1

(

k + 1

i + 1

)

(Ric ω − ω)i−1 ∧ ωn−i

4



=
k

∑

i=1

i−1
∑

j=0

(−1)i−1−j

(

k + 1

i + 1

)(

i − 1

j

)

Ric (ω)j ∧ ωn−1−j

=

k−1
∑

j=0

Ric (ω)j ∧ ωn−1−j

k−j
∑

i=1

(−1)i−1−j

(

k + 1

i + 1

)(

i − 1

j

)

=

k−1
∑

j=0

(k − j)Ric (ω)j ∧ ωn−1−j

where we made use of the combinatorial identity

k−j
∑

i=1

(−1)i−1−j

(

k + 1

i + 1

)(

i − 1

j

)

= k − j.

Therefore the third term in (4) may be rewritten in the form

∫

M

√
−1∂f ∧ ∂̄f ∧

k
∑

i=1

iωn−1−(k−i) ∧ Ric (ω)k−i. (5)

Note that it is nonnegative on H(2)
c1(M) with equality if and only if f is constant (thanks to

the i = k term). Since the other two terms in (4) are nonnegative the Lemma follows.

In the following section we show how Theorem 2.1 may be applied to provide a simplified
proof of Theorems 3.2 and 3.3 of Song and Weinkove, in particular avoiding both the lengthy
computations involving the second path (in (2)) and the difficulties arising from the existence
of holomorphic vector fields (cf. [SW, Section 3]).
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Proof of Theorem 2.1. The proof is a simple consequence of the work of Bando and Mabuchi.
Note that the nonexistence of fixed points of negative order implies that of positive order, and
vice versa. Therefore assume that for some ω ∈ Hc1(M) and some l ∈ N one has Ric(−l)(ω) =
ω. By the cocycle condition we therefore have

0 = E0(ω, Ric(−l)ω) =

l−1
∑

i=0

E0(Ric(−i)ω, Ric(−i−1)ω). (6)

On the other hand, from the first part of (3)

E0(ω, Ric(−1)ω) = −V −1

∫

M×[0,1]

(1 − t)(∆ωϕt
ϕ̇t)

2ωn
ϕt
∧ dt − (I − J)(ω, Ric(−1)ω) ≤ 0, (7)

with equality if and only if Ric(−1)ω = ω. Therefore each of the terms in (6) must vanish
identically and we conclude that (M, ω) is Kähler-Einstein. This proves (i).
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We now turn to the limiting behavior of the iteration and assume that ω ∈ Hc1(M) \ E.
Again from the cocycle condition one has that

Cω := lim
l→∞

E0(ω, Ric(−l)ω) =

∞
∑

i=0

E0(Ric(−i)ω, Ric(−i−1)ω). (8)

From (7) we know that each of the summands is negative and hence the limit exists in R
− ∪

{−∞}. For each i ≥ 0 write Ric(−i−1)ω = Ric(−i)ω +
√
−1∂∂̄ϕ(i). Set ϕ := liml→∞

∑l
i=0 ϕ(i)

when the limit exists.
Now suppose that ω is such that liml→∞ Ric(−l)ω ∈ H(∞)

c1(M). Rewriting (8)

lim
l→∞

E0(ω, ω +
√
−1∂∂̄

l
∑

i=0

ϕ(i)) =

∞
∑

i=0

E0(Ric(−l)ω, Ric(−l−1)ω) ≤ −Cω < ∞.

This implies that the limit satisfies the Kähler-Einstein equation. Since by assumption the
limit is in L∞(M)

the usual theory of non-degenerate Monge-Ampère equations implies that ϕ has a C2,α(M)
bound and consequently, from elliptic regularity theory, it follows that ωϕ ∈ E. Hence

H(∞)
c1(M) ⊆ E.

Next, we show that if E 6= ∅ then H(∞)
c1(M) 6= ∅. Indeed, for any ωKE ∈ E and ω ∈ Hc1(M)

E0(ωKE, Ric(−l)ω) = E0(ωKE, ω) +
l−1
∑

i=0

E0(Ric(−i)ω, Ric(−i−1)ω). (9)

If we had a uniform a priori C0 bound on
∑l

i=0 ϕ(i), then (9) would imply that ϕ exists, lies in
W 1,2(M, w) and satisfies the Kähler-Einstein equation Ric (ωϕ) = ωϕ. Since then ϕ would be
a weak solution of a non-degenerate Monge-Ampère equation elliptic regularity would imply
that ϕ ∈ C∞(M). We now prove

Lemma 5.1. For each ω ∈ Hc1(M) there exists C > 0 depending only on (M, ω) such that

||∑l
i=0 ϕ(i)||L∞(M) < C for all l ≥ 0.

Hence to complete the proof of (ii) we only need to show that E ⊆ H(∞)
c1(M) when H(∞)

c1(M) 6=
∅. But indeed take a single point ω ∈ H(0)

c1(M) whose orbit converges (necessarily) to a Kähler-

Einstein metric ωKE. The fact that Ric(−1) commutes with pull-back by automorphisms
together with the second part of Theorem 3.1 then imply that

{

lim
l→∞

Ric(−l)h?ω : h ∈ Aut(M)0

}

= E,

where Aut(M)0 denotes the identity component of the holomorphic automorphisms group.
Next, to prove (iii) note that positive powers of Ric can never converge on Hc1(M) \ E.

Indeed by our previous argument the limit must be Kähler-Einstein when it is regular, yet
since E0 strictly increases along iterations this would imply the existence of metrics whose
K-energy with respect to this Kähler-Einstein metric is negative, contradicting Theorem 3.1.
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Proof of Theorem 3.2. Let ωKE be a Kähler-Einstein metric in Hc1(M) and let ω be any Kähler

metric with nonnegative Ricci curvature. By Theorem 2.1 ω1 := liml→∞ Ric(−l)ω exists and
is Kähler-Einstein. Then Lemma 3.4 gives

Ek(ωKE, ω) = Ek(ωKE, ω1) +
l

∑

i=0

Ek(Ric(−i−1)ω, Ric(−i)ω) ≥ Ek(ωKE, ω1).

Since ω1 = h?ωKE for some h ∈ Aut(M)0, the right hand side vanishes by the invariance
of the Chen-Tian functionals (cf. Section 2) and we are done.

Proof of Theorem 3.3. The proof is identical except that for k = 1 (4) is non-positive on the
whole of Hc1(M) and so we may start our iteration at any point ω ∈ Hc1(M).

J�����45���
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Iteration on other classes. Let ω ∈ HΩ be a Kähler representative of an arbitrary class

Ω in the Kähler cone of a Fano manifold M . Let ν ∈ H(0)
c1(M) be a representative of c1(M).

By the C-Y Theorem there exists a unique Kähler representative ω1 of Ω whose Ricci form

equals ν. Define a map Ric
(−1)
Ω : H(0)

c1(M) → HΩ by Ric
(−1)
Ω ν := ω1 (when appropriate norms

are chosen, it defines a homeomorphism of Banach spaces, as in Section 2). We may therefore

define an operator RicΩ on HΩ by RicΩ := Ric
(−1)
Ω ◦Ric ◦Ric . This gives rise to an iteration

on Ω by setting Ric
(k)
Ω := Ric

(−1)
Ω ◦ Ric(k) ◦ Ric for each k ∈ Z. Note that this induces a

filtration on HΩ defined by H(k)
Ω := {ω ∈ HΩ : Ric ω ∈ H(k)

c1(M)}.
From Theorem 2.1 we see that that orbits of the new dynamical systems converge, if and

only M is Kähler-Einstein, to a Kähler representative which is characterized by the property
that its Ricci form is Kähler-Einstein. For Ω 6= c1(M), how is this dynamical system related
to the study of the space HΩ? In particular, it would be interesting to relate this to the
existence problem of extremal metrics for Kähler classes near c1.

Upper bounds for Ek and escape rates. For a Kähler-Einstein manifold, E0 and E1 are
known to be bounded from below on the c1 class (cf. Section 3). In fact, a stronger statement
is true: E0 and E1 are proper in the sense of Tian if and only there exists a Kähler-Einstein
metric in the class [T], [SW, Theorem 1.4]. In general though, one knows that they are not
bounded from above. For example along a one-parameter subgroup of automorphisms for
which the corresponding generalized Futaki invariant does not vanish. Or (for E0 at least)
simply take a sequence of potentials for which I−J blows up. It is natural to ask whether the

filtration {H(k)
c1(M)}k≥0 corresponds to different energy sub-level sets of the Ek. In particular

we ask whether there exists a constant depending only on (M.ω0), l ∈ N and ε > 0 such that

Ek is bounded from above on H(l)
c1(M)(ε) := {ω ∈ H(l)

c1(M) : Ric(l)ω ≥ εω0}.
In light of Theorem 2.1 one readily sees that such a result would relate to the question

of determining the limiting behavior of positive iterates of Ric . At the moment it is only

obvious that many orbits escape to Hc1(M) \ H(2)
c1(M) after finitely many iterations, but it is

not clear if there are Kähler metrics which do not lie in Ric(−l)(Hc1(M) \ H(2)
c1(M)) for some

l. It would be interesting to determine whether one may find orbits of infinite length and

whether asymptotically they could correspond to points in H(2)
c1(M) \H

(2)
c1(M) or otherwise blow

up (special degenerations).
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Questions of stability. When M is not Kähler-Einstein one may still apply the iteration
process, though it must blow-up. It would be interesting to know whether such a sequence cor-
responds to a special degeneration and hence explore the relation of the dynamics presented
here to questions of G.I.T stability related to the existence problem for Kähler-Einstein met-
rics.

Let ω = ω0 denote the initial metric and let ϕ1 be a Kähler potential with

Ric (ω0 +
√
−1∂∂̄ϕ1) = ω0.

Put
√
−1∂∂̄h = Ric ω0 − ω0. The function h thus given is for the moment determined only

up to a an additive constant. The equation then becomes

−
√
−1∂∂̄ log det gϕ1

=ω0 = ω0 − Ric ω0 + Ric ω0 = −
√
−1∂∂̄ log det g −

√
−1∂∂̄h

or √
−1∂∂̄ log

ωn
ϕ1

ωn
=

√
−1∂∂̄h

that is
ωn

ϕ1
= ωneh

together with the volume normalization

1

V

∫

M

ehωn = 1.

This determines ϕ1 only up to a constant, which will be fixed in the the next step.
Put ω1 = ωϕ1

. In the second step we solve

Ric (ω1 +
√
−1∂∂̄ϕ2) = ω1

and ω1 − Ric ω1 = ω1 − ω0 =
√
−1∂∂̄ϕ1. The Monge-Ampère equation is now

ωn
ϕ1+ϕ2

= ωn
ϕ1

e−ϕ1 = ωneh−ϕ1 ,

with ϕ1 determined uniquely by

1

V

∫

M

ωneh−ϕ1 = 1.

Iterating this procedure we have Ric(−l)ω = ωΣl
j=1

ϕj
for each l ∈ N where

ωn
Σl

j=1
ϕj

= ωneh−Σl−1

j=1
ϕj , (10)

and each of the ϕj is uniquely determined by

1

V

∫

M

ωneh−Σl−1

j=1
ϕj = 1. (11)

From now on we set Φl = Σl
j=1ϕj and ωl = ωΦl

.
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The following formula is taken from [T,§7.2]. For the derivation (for any Kähler class)
we refer to [C] where an equivalent expression is derived.

Proposition 6.1. Let h be a function satisfying Ric ω − µω =
√
−1∂∂̄h. One has

E0(ω, ωϕ) =
1

V

∫

M

log
ωn

ϕ

ωn
ωn

ϕ − µ(I − J)(ω, ωϕ) +
1

V

∫

M

h(ωn − ωn
ϕ). (12)

As an immediate corollary we have

Proposition 6.2. Let µ = 1. Then

E0(ω, ωl) = − (I − J)(ω, ωl) −
1

V

∫

M

l−1
∑

k=1

ϕkωn
l +

1

V

∫

M

hωn ≤ 0, (13)

with equality if and only if ω is Kähler-Einstein.

Proof. The formula follows directly from the Proposition. To show the inequality we note
that

E0(ωk−1, ωk) =
1

V

∫

M

−ϕk−1ω
n
k − (I − J)(ωk−1, ωk) +

1

V

∫

M

−ϕk−1(ω
n
k−1 − ωn

k ).

= − (I − J)(ωk−1, ωk) − 1

V

∫

M

ϕk−1ω
n
k−1.

The first term is nonpositive with equality iff ωk = ωk−1 = Ric ωk, while the second term is
nonpositive since

1 =
1

V

∫

M

ωn
k =

1

V

∫

M

e−ϕk−1ωn
k−1 ≥ 1

V

∫

M

(1 − ϕk−1)ω
n
k−1.

Since

E0(ω, ωl) =

l
∑

k=1

E0(ωk−1, ωk)

the conclusion follows.

Let G denote the Green function for ∆ = ∆∂̄ wrt (M, ω) with
∫

M
G(x, y)ωn(y) = 0 and

A(M, ω) = − inf G such that

f(x) − 1

V

∫

M

fωn = − 1

V

∫

M

G(x, y)∆f(y)ωn(y), ∀ f ∈ C∞(M).
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Theorem 6.3. [BM] One has

A(M, ω) ≤ cn

2
diam(M, ω)2.

If Ric ω ≥ εω then diam(M, ω)2 ≤ π2(2n − 1)/ε by Myers’ Theorem [P, p.245].

Proposition 6.4. Assume that Aut(M, J) is finite. Assume that there exists an integer
l0(ω) and an ε > 0 such that Ric ωl ≥ εωl, ∀ l ≥ l0. Then there exists a constant C1

depending only on (M, w) such that

||Φl||L∞(M,ω) ≤ C1, ∀ l ∈ N.

Proof. Let Gl be the Green function for ∆l = ∆∂̄,ωl
(i.e., the Laplacian wrt (M, ωl))

satisfying
∫

M
Gl(x, y)ωn

l (y) = 0. Set Al = − infM×M Gl.
Since −n < ∆0Φl and n > ∆lΦl the Green formula gives

Φl(x) − 1

V

∫

M

Φlω
n = − 1

V

∫

M

G(x, y)∆Φl(y)ωn(y) ≤ nA0,

Φl(x) − 1

V

∫

M

Φlω
n
l = − 1

V

∫

M

G(x, y)∆Φl(y)ωn
l (y) ≥ −nAl.

Hence
oscΦl ≤ n(A0 + Al) + I(ω, ωl). (14)

The existence of a Kähler-Einstein metric implies the properness of E0 in the sense of Tian
[T1], [T2, Ch.6]. In other words, if E0(ω, ·) is bounded from above on a subset of H so is
I(ω, ·). Since for each l one has E0(ω, ωl) ≤ 0 we conclude that I(ω, ωl) is uniformly bounded
independently of l.

Finally, the Proposition follows from Theorem 6.3 which provides for a uniform bound
for Al.

Note: even to show the curvature bound for a subsequence would be good at this point.
Assume that (M, J) admits a Kähler-Einstein metric ωKE. Consider the family of Monge-

Ampère equations (2). Define the Aubin operators Aubε by setting Aubε(ω) = ωϕ1+ε
for

each ε ∈ [0, 1]. Note that Aub0(ω) = Ric(−1)ω and Aub1(ω) = ωKE. Formally, Aubε =
( 1
1−ε

(Ric − εI))−1.

Corollary 6.5. Assume that Aut(M, J) is finite. Let ε ∈ (0, 1]. The limit points of the
operator Aubε are {ωKE}.

Proof. As before we obtain (14) with ωl replaced by Aub(l)
ε (ω). Since the K-energy decreases

along iterates (cf. (3)) we still have a uniform bound on I along the orbits. By Theorem 6.3

we also have a uniform bound (depending on ε) on A(M, Aub(l)
ε (ω)).

Notons que dans le cas où α(M) = 1 l’on peut définir une autre itération (qui n’est pas

tout à fait Ric(−s) pour s < 1 (Cf. mon email précédent) mais qui y ressemble et qui converge.
Il s’agit de

ωneh = ωn
ϕ1

, ωn
ϕ1

e−sϕ1 = ωn
ϕ1+ϕ1+s

, ωn
ϕ1+ϕ1+s

e−sϕ1+s = ωn
ϕ1+ϕ1+s+ϕ2+s

, . . .

10



avec les normalisations nécessaires.
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Let Ric ω + ω =
√
−1∂∂̄h with 1

V

∫

M
ehωn = 1. We define the iteration now by putting

−Ricωl = ωl−1. This can be rewritten in terms of the following Monge-Ampère equations

ωn
Σl

j=1
ϕj

= eh+Σl−1

j=1
ϕjωn,

1

V

∫

M

eh+Σl−1

j=1
ϕj ωn = 1, ∀ l ∈ N. (15)

Proposition 7.1. Let µ = −1. Then

E0(ω, ωl) =(I − J)(ω, ωl) +
1

V

∫

M

l−1
∑

k=1

ϕkωn
l +

1

V

∫

M

hωn. (16)

Proof. Once again the formula follows directly from the Proposition above. Nous devrions?
pouvoir montrer que l’énergie décroit.

Proposition 7.2. Let k ∈ Z. If Ric(k)ω = ω then ω is Kähler-Einstein.

Proof. Recall that (cf. §3) that I(ω, ωϕ) ≥ |ϕ|2W 1,2(M,ω). Assume that {Ric(−j)ω}k
j=0 is the

orbit of ω under Ric(−1). Note that ϕj , 1 ≤ j ≤ k are all uniquely determined. Moreover,
Φk = −h. Then, with the above notations, we have

∫

M

√
−1∂ϕk ∧ ∂̄ϕk ∧ ωn−1

k−1 ≤
∫

M

ϕk(ωn
k−1 − ωn

k ) =

∫

M

(−Φk−1 − h)(1 − eϕk−1)ωn
k−1.

Proposition 7.3. Let p ∈ (1,∞). There exists a constant C1 depending only on p, M and
ω such that

||Φl||L∞(M,ω) ≤ C1, ∀ l ∈ N.

Proof. Let p ∈ (1,∞). According to the work of Kolodziej [Ko] (or Blocki [Bl2] if p ∈ (2,∞)
which will suffice for the proof) and in view of (15) it suffices to prove that

||eh+Φl ||Lp(M,ω) ≤ C2, ∀ l ∈ N,

for C2 = C(M, ω, p). From the normalization in (15) it follows that 1
V

∫

M
(h + Φl)ω

n ≤ 0. In

particular sup(h + Φl) ≤ − 1
V

∫

M
(h + Φl − sup(h + Φl))ω

n. Therefore

1

V

∫

M

ep(h+Φl)ωn ≤ ep sup(h+Φl) ≤ e
−p 1

V

∫

M
(h+Φl−sup(h+Φl))ω

n

≤ ep osc he
−p 1

V

∫

M
(Φl−supΦl)ω

n

.

Let G be the Green function for ∆ = ∆∂̄ satisfying
∫

M
G(x, y)ωn(y) = 0. Since −n < ∆Φl

the Green formula gives

1

V

∫

M

(sup Φl − Φl)ω
n = − 1

V

∫

M

G(x0, y)∆Φl(y)ωn(y) ≤ nA

11



where A = − infM×M G(x, y) and x0 ∈ M satisfies Φl(x0) = sup Φl. Therefore C2 =
ep(osc h+nA).
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