PUBLICATIONS: A SELECTION
Books and monographs
Kieran, C. (Ed.). (2018). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global
evolution of an emerging field of research and practice.
New York: Springer.
Kieran, C., Pang, J. S., Schifter, D.,
& Ng, S. F. (2016). Early algebra:
Research into its nature, its learning, its teaching. New York: Springer.
Fey, J.T.,
Cuoco, A., Kieran, C., McMullin, L., & Zbiek, R.M. (Eds.). (2003). Computer algebra systems in secondary school
mathematics education. Reston,
VA: National Council of Teachers of Mathematics.
Stigler, J., Hiebert, J., Kieran, C., Wearne, D.,
Seago, N., & Hood, G. (2003). TIMSS
video studies: Explorations of algebra teaching (Course Guide). Los Angeles: Intel.
Stigler, J.,
Hiebert, J., Kieran, C., Wearne, D., Seago, N., Hood, G., Taylor, F., &
Yost, J. (2003). TIMSS video studies:
Explorations of algebra teaching (Facilitator Guide). Los Angeles: Intel.
Kieran, C.,
Forman, E., & Sfard, A. (Eds.). (2002). Learning
discourse: Discursive approaches to research in mathematics education.
Dordrecht, The Netherlands: Kluwer Academic.
Kieran, C.,
Forman, E., & Sfard, A.
(Eds.). (2001). Bridging
the individual and the social.
(PME special issue of Educational
Studies in Mathematics, 46(1-3)).
Dordrecht, The Netherlands: Kluwer Academic.
Bednarz, N.,
Kieran, C., & Lee, L.
(Eds.). (1996). Approaches
to algebra: Perspectives for
research and teaching.
Dordrecht, The Netherlands: Kluwer Academic.
Kieran,
C. (Ed.). (1995). New
perspectives on school algebra:
Papers and discussions of the ICME-7 Algebra Working Group. (Journal of Mathematical Behavior–special
issue–Vol. 14, #1). Norwood,
NJ: Ablex.
Robitaille,
D., Wheeler, D., & Kieran, C.
(Eds.). (1994). Selected
lectures from the 7th International Congress on Mathematical Education. QuŽbec: Les Presses de l'UniversitŽ
Laval.
Kieran, C.,
& Dawson, A. J. (1992). Current
research on the teaching and learning of mathematics in Canada / Les recherches
en cours sur l'apprentissage et l'enseignement des mathŽmatiques au Canada
(monograph of the Canadian Mathematics Education Study Group / Groupe canadien
d'Žtude en didactique des mathŽmatiques).
MontrŽal: CMESG.
Wagner, S.,
& Kieran, C. (Eds.). (1989). Research
issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers
of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Bergeron,
J.C., Herscovics, N., & Kieran, C.
(Eds.). (1987). Proceedings
of the 11th International Conference for the Psychology of Mathematics
Education (Vols. I, II, III).
MontrŽal: UniversitŽ de MontrŽal.
Book Chapters and Contributions to Collective Works
Kieran, C. (in preparation). Task design
frameworks in mathematics education research: An example of a domain-specific
frame for algebra learning with technological tools.
Kieran, C. (2018). Part V: Preface – Planning and
assessment: Teachers and students as central actors. In A. Kajander, J. Holm, & E. J. Chernoff (Eds.), Teaching and learning
secondary school mathematics – Canadian perspectives in an international
context (pp. ). New York : Springer.
Kieran, C. (2018). Seeking,
using, and expressing structure in numbers and numerical operations: A
fundamental path to developing early algebraic thinking. In C. Kieran (Ed.), Teaching and learning algebraic
thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp.
79-105). New York: Springer.
Kieran,
C. (2018). Introduction. In C. Kieran (Ed.), Teaching and learning algebraic
thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp.
ix-xiii). New York: Springer.
Kieran, C. (2018). Conclusions and looking ahead. In
C. Kieran (Ed.), Teaching
and learning algebraic thinking with 5- to 12-year-olds: The global
evolution of an emerging field of research and practice (pp.
427-438). New York: Springer.
Kieran,
C. (2018). Algebra teaching and learning (updated and revised edition). In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp.). Dordrecht,
The Netherlands: Springer Reference
Kieran, C., Pang, J. S., Ng, S. F.,
Schifter, D., & Steinweg, A. S. (2017). Topic Study Group No. 10 :
Teaching and learning of early algebra. In G. Kaiser (Ed.), The Proceedings of the 13th International
Congress on Mathematical Education (pp. ). New York: Springer.
Kieran, C., & Kilpatrick, J. (2017).
ICMI awards ceremony. In G. Kaiser (Ed.), The
Proceedings of the 13th International Congress on Mathematical Education
(pp. ). New York: Springer.
Kieran, C. (2017). Cognitive neuroscience
and algebra: Challenging some traditional beliefs. In S. Stewart (Ed.), And the rest is just algebra (pp.
157-172). New York: Springer.
Kieran, C. (2016). Task design in
mathematics education: Frameworks and exemplars. In S. Oesterle, D. Allan,
& J. Holm (Eds.), Proceedings of the
2016 Annual Meeting of the Canadian
Mathematics Education Study Group (40th anniversary meeting, invited
plenary, pp. 45-66). Burnaby, BC: CMESG.
Kieran, C., & Drijvers, P. (2016).
Digital technology and mathematics education: Core ideas and key dimensions of
Michle ArtigueÕs theoretical work on digital tools and its impact on
mathematics education research. In B. R. Hodgson, A. Kuzniak, & J.-B.
Lagrange (Eds.), The didactics of
mathematics: Approaches and issues. A homage to Michle Artigue (pp.
123-142). New York: Springer.
Kieran, C. (2016). A historical perspective
on mathematics education research in Canada : The emergence of a
community. In P. Liljedahl et al. (Ed.), 40
Years of Canadian Mathematics Education Study Group (pp. 255-278). Burnaby,
BC: CMESG.
Kieran, C., & Towers, J. (2016). From
theory to observational data (and back again). In P. Liljedahl et al. (Ed.), 40 Years of Canadian Mathematics Education
Study Group (pp. 161-167). Burnaby, BC: CMESG.
Kieran, C., Doorman, L.M., & Ohtani, M.
(2015). Frameworks and principles for task design. In A. Watson & M. Ohtani
(Eds.), Task design in mathematics
education (pp. 19-81). New York: Springer.
Kieran, C. (2015). ICMI Awards Report. In
S. J. Cho (Ed.), The Proceedings of the
12th International Congress on Mathematical Education (pp. 13-15). New
York: Springer.
Kieran, C.
(2014). Algebra teaching
and learning. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 27-32). Dordrecht,
The Netherlands: Springer Reference.
Martinez, C., Guzman, J., & Kieran, C.
(2014). El papel de CAS en la promoci—n del razonimiento algebraico y en el
surgimiento de teor’a. In L. L—pez Vera (Ed.), Tecnologia computacional en la ense–anza de las matem‡ticas (libro
electr—nico, pp. 49-56). Nuevo LŽon,
MŽxico: Publicaciones UANL (ISBN: 978-607-27-0301-8).
Kieran, C., Krainer,
K., Shaugnessy, J.M. (2013). Linking research and
practice: Teachers as key stakeholders in mathematics education research. In
M.A. Clements, A. Bishop, C. Keitel, J. Kilpatrick,
& F. Leung (Eds.), Third international handbook
of mathematics education (pp. 361-392).
Dordrecht, The Netherlands: Springer.
Kieran, C. (2013). The false dichotomy in
mathematics education between conceptual understanding and procedural skills:
An example from algebra. In K. Leatham (Ed.), Vital directions in mathematics education research (pp. 153-171).
New York: Springer.
Kieran, C. (2013). Entretien
avec Carolyn Kieran. In J. Proulx (Ed.), De
la didactique des mathŽmatiques: Entretiens avec ses batisseurs (pp.
145-169). QuŽbec, QC: Presses de lÕUniversitŽ du QuŽbec.
Kieran, C. (2012). Algebra teaching and learning. Encyclopedia of Mathematics Education.
Springer: SpringerReference. http://www.springerreference.com/docs/html/chapterdbid/313185.html
Kieran, C., Tanguay, D., & Solares, A.
(2012). Researcher-designed resources and their adaptation within classroom
teaching practice: Shaping both the implicit and the explicit. In G. Gueudet,
B. Pepin, & L. Trouche (Eds.), : From
text to ÔlivedÕ resources: Mathematics curriculum material and teacher
development (pp. 189-213). New
York: Springer.
Kieran, C. (2011). Overall commentary on
early algebraization: Perspectives for research and teaching. In J. Cai &
E. Knuth (Eds.), Early algebraization: A
global dialogue from multiple perspectives (pp. 579-593). New York:
Springer.
Kieran, C., & Guzman, J. (2010). Role of task and technology in provoking
teacher change: A case of proofs and proving in high school algebra. In R.
Leikin & R. Zazkis (Eds.), Learning
through teaching mathematics: Development of teachersÕ knowledge and expertise
in practice (pp. 127-152). New
York: Springer.
Drijvers, P., Kieran, C., & Mariotti,
M.-A. (2009). Integrating technology into mathematics education: Theoretical
perspectives. In C. Hoyles & J.-B. Lagrange
(Eds.), Mathematics education and
technology: Rethinking the terrain (pp. 89-132). New York: Springer.
Kieran, C.,
& Saldanha, L. (2008). Designing tasks for the co-development of conceptual
and technical knowledge in CAS activity: An example from factoring. In K. Heid
& G.W. Blume (Eds.), Research on technology
and the teaching and learning of mathematics: Syntheses, cases, and
perspectives (Vol. 2, pp. 393-414). Greenwich, CT: Information Age
Publishing.
Kieran,
C. (2007). Learning and teaching algebra at the middle school through college
levels: Building meaning for symbols and their manipulation. In F. K. Lester,
Jr., (Ed.), Second handbook of research
on mathematics teaching and learning (pp. 707-762). Greenwich, CT: Information Age
Publishing.
Kieran, C., & Guzman, J. (2007). Interaction entre calculatrice
technique et thŽorie : ƒmergence de structures numŽriques chez des Žlves de 12
ˆ 15 ans dans un environnement calculatrice. In R. Floris & F. Conne
(Eds.), Environnements informatiques,
enjeux pour lÕenseignement des mathŽmatiques (pp. 61-74). Genve: deBoeck.
Kieran, C.
(2006). Research on the learning and teaching of algebra. In A. GutiŽrrez &
P. Boero (Eds.), Handbook of research on
the psychology of mathematics education (pp. 11-50). Rotterdam: Sense.
Kieran, C.,
& Guzman, J. (2006). The number-theoretic experience of 12- to 15-year-olds
in a calculator environment: The intertwining co-emergence of technique and
theory. In R. Zazkis & S. R. Campbell (Eds.), Number theory in mathematics education (pp. 173-200). Mahwah, NJ:
Lawrence Erlbaum.
Kieran, C.,
& Guzman, J. (2005). Five steps to zero: Students developing elementary
number theory concepts when using calculators. In Wm.J. Masalski (Ed.), Technology-supported mathematics learning environments
(Sixty-seventh Yearbook of the National Council of Teachers of Mathematics, pp.
35-50). Reston, VA: The Council.
Kieran, C.
(2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick, & M. Kendal
(Eds.), The future of the teaching and
learning of algebra: The 12th ICMI study (pp. 21-34). Dordrecht, The Netherlands: Kluwer.
Kieran, C.,
& Yerushalmy, M. (2004). Research on the role of technological environments
in algebra learning and teaching. In K. Stacey, H. Chick, & M. Kendal
(Eds.), The future of the teaching and
learning of algebra: The 12th ICMI study (pp. 99-152). Dordrecht, The Netherlands: Kluwer.
Kieran,
C. (2003). The twentieth century emergence of the
Canadian mathematics education research community. In G. Stanic & J. Kilpatrick (Eds.),
A history of school mathematics (pp.
1701-1778). Reston, VA: National
Council of Teachers of Mathematics.
Cedillo, T.,
& Kieran, C. (2003). Initiating students into algebra with
symbol-manipulating calculators. In
J.T. Fey et al. (Eds.), Computer algebra
systems in secondary school mathematics education (pp. 219-239). Reston, VA: National Council of Teachers
of Mathematics.
Kieran,
C. (2003). The transition from arithmetic to
algebra: A model for conceptualizing school algebra and the role of computer
technology in supporting the development of algebraic thinking. In E. Filloy (Ed.), Matem‡tica educativa: Aspectos de la investigaci—n actual (pp.
121-142). Mexico City: Fondo de
Cultura Econ—mica.
Kieran, C.
(2002). Exploring the mathematical
discourse of 13-year-old partnered problem solving and its relationship to the
mathematics that emerges. In C.
Kieran, E. Forman, & A. Sfard (Eds.), Learning
discourse: Discursive approaches to research in mathematics education (pp.
187-228). Dordrecht, The Netherlands: Kluwer Academic.
Kieran, C. (2002). A historical perspective
on mathematics education research in Canada: The emergence of a community. In E. Simmt & B. Davis (Eds.), The 25th anniversary conference
of the Canadian Mathematics Education Study Group (pp. 165-186). Kingston, ON: CMESG Program Committee.
Sfard, A., & Kieran, C. (2001).
Preparing teachers for handling students' mathematical communication: Gathering knowledge and building
tools. In F. L. Lin & T. J.
Cooney (Eds.), Making sense of
mathematics teacher education (pp. 187-205). Dordrecht, The Netherlands: Kluwer.
Kieran, C. (1998). Models in mathematics education
research: A broader view of research results. In A. Sierpinska & J. Kilpatrick
(Eds.), Mathematics education as a
research domain: A search for identity (Vol 1, pp. 213-225). Dordrecht, The Netherlands: Kluwer
Academic.
Kieran, C. (1997). Mathematical concepts at the secondary
school level: The learning of
algebra and functions. In T. Nunes
& P. Bryant (Eds.), Learning and
teaching mathematics: An international perspective (pp. 133-158). East Sussex, UK: Psychology Press.
Bednarz, N.,
Kieran, C., & Lee, L.
(1996). Approaches to
algebra: Perspectives for research and teaching. In N. Bednarz, C. Kieran, & L. Lee
(Eds.), Approaches to algebra:
Perspectives for research and teaching (pp. 3-14). Dordrecht, The Netherlands: Kluwer.
Kieran, C., Boileau, A., & Garanon, M. (1996).
Introducing algebra by means of a technology-supported, functional
approach. In N. Bednarz, C. Kieran,
& L. Lee (Eds.), Approaches to
algebra: Perspectives for research
and teaching (pp. 257-293).
Dordrecht, The Netherlands: Kluwer.
Kieran, C. (1996). The changing face of school
algebra. In C. Alsina, J. Alvarez,
B. Hodgson, C. Laborde, & A. Perez (Eds.), 8th International Congress on Mathematical Education, Selected Lectures
(pp. 271-290). Sevilla, Spain: S.A.E.M. Thales.
Kieran, C.,
& Chalouh, L. (1993). The transition from arithmetic to
algebra. In D. T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp.
179-198). New York: Macmillan.
Kieran,
C. (1993). Functions, graphing, and
technology: Integrating research on
learning and instruction. In T. A.
Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating research on the graphical representation of functions
(pp. 189-237). Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C. (1992). The learning and
teaching of school algebra. In D.
A. Grouws (Ed.), Handbook of research on
mathematics teaching and learning (pp. 390-419). New York: Macmillan (this chapter has been
translated into Spanish, French, and Japanese).
Kieran,
C. (1990). Cognitive processes involved in learning
school algebra. In P. Nesher &
J. Kilpatrick (Eds.), Mathematics and
cognition: A research synthesis by
the International Group for the Psychology of Mathematics Education (pp.
96-112). Cambridge, UK: Cambridge University Press.
Kieran,
C. (1990). Perspectives on
mathematical literacy. In S. P.
Norris & L. M. Phillips (Eds.), Foundations
of literacy policy in Canada (pp. 109-126). Calgary, AB: Detselig.
Wagner, S.,
& Kieran, C. (1989). An agenda for research on the learning
and teaching of algebra. In S.
Wagner & C. Kieran (Eds.), Research
issues in the learning and teaching of algebra (pp. 220-237). Reston, VA: National Council of Teachers
of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Kieran, C.,
& Wagner, S. (1989). The
Research Agenda Conference on Algebra: Background and issues. In S. Wagner
& C. Kieran (Eds.), Research issues
in the learning and teaching of algebra (pp. 1-10). Reston, VA: National Council
of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C. (1989). The early learning of algebra: A
structural perspective. In S.
Wagner & C. Kieran (Eds.), Research
issues in the learning and teaching of algebra (pp. 35-56). Reston, VA: National Council of Teachers
of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C. (1988). Two different approaches
among algebra learners. In A.F.
Coxford (Ed.), The ideas of algebra, K-12
(Yearbook of the National Council of Teachers of Mathematics, pp.
91-96). Reston, VA: NCTM.
Groen, G.,
& Kieran, C. (1983). In search of Piagetian mathematics. In H. Ginsburg (Ed.), The development of mathematical thinking (pp.
351-375). New York: Academic Press.
Peer-reviewed Articles in Journals
Jeannotte, D., & Kieran, C.
(2017). A conceptual model of
mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96, 1-16.
Kieran, C. (2014). What
Does Research Tell Us About Fostering Algebraic Reasoning in School Algebra? Research brief published on the web site
of the National Council of Teachers of Mathematics; retrieved on September 5,
2014, from http://www.nctm.org/news/content.aspx?id=42323
Kieran, C. (2014). What
Does Research Tell Us About Fostering Algebraic Thinking in Arithmetic? Research brief published on the web site of
the National Council of Teachers of Mathematics; retrieved on September 5,
2014, from http://www.nctm.org/news/content.aspx?id=42315
Solares, A., & Kieran, C.
(2013). Articulating syntactic and numeric perspectives on equivalence: The
case of rational expressions. Educational
Studies in Mathematics, 84(1), 115-148. DOI: 10.1007/s10649-013-9473-7.
Kieran, C., Boileau, A.,
Tanguay, D., & Drijvers, P. (2013). Design researchersÕ documentational
genesis in a study on equivalence of algebraic expressions. ZDM, The International Journal on
Mathematics Education, 45, 1045-1056. DOI: 10.1007/s11858-013-0516-4.
Guzman, J., & Kieran, C.
(2013). Becoming aware of mathematical gaps in new curricular materials: A
resource-based analysis of teaching practice. The Mathematics Enthusiast, 10(1&2), 163-190.
Kieran, C. (2012). Commentary: Characterizing
meta-level mathematical discourse and accounting theoretically for its
development – The instructional and the spontaneous. International Journal of Educational Research, 51–52,
146–150.
Kieran,
C. (2011). Note de lecture ˆ propos de Ç Ressources vives - le travail
documentaire des professeurs en mathŽmatiques È. Recherches en Didactique des MathŽmatiques, 31(1), 131-134.
Hitt,
F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a
CAS environment with tasks designed from a Task-Technique-Theory perspective. International Journal of Computers for
Mathematical Learning, 14, 121-152. (available from Springer On-line at: http://dx.doi.org/10.1007/s10758-009-9151-0)
Kieran, C. (2007). Developing algebraic
reasoning: The role of sequenced tasks and teacher questions from the primary
to the early secondary school levels. Quadrante, XVI(1), 5-26.
Kieran, C. (2007). Interpreting and
assessing the answers given by the CAS expert. The International Journal for Technology in Mathematics Education, 14,
103-107 (CAME 4 Special Issue, edited by M.K. Heid).
Kieran, C., & Drijvers, P., with
Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzm‡n, J. (2006). The
co-emergence of machine techniques, paper-and-pencil techniques, and
theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for
Mathematical Learning, 11, 205-263.
Proulx, J., Descamps-Bednarz, N., &
Kieran, C. (2006). CaractŽristiques des explications orales en classe de mathŽmatiques. Canadian
Journal of Science, Mathematics and Technology Education, 6,
267-292.
Kieran, C. (2004). Algebraic thinking in
the early grades: What is it? The Mathematics Educator, 8(1), 139-151.
Guzman, J., Kieran, C., &
Squalli, H. (2003). La calculadora con pantalla multilinea y el surgimento de
estrategias numŽricas en alumnus de primero, segundo y tercer a–o de
secundaria. Revista Educaci—n Matem‡tica,
15(2). 105-128.
Hershkowitz, R., & Kieran, C.
(2002). Fusionner des
reprŽsentations mathŽmatiques machinalement ou en rŽflŽchissant : expŽriences
dÕutilisation de calculatrices graphiques. Sciences et techniques
Žducatives, 9(1-2),
201-218.
Kieran, C.
(2001). Exploring the mathematical
discourse of 13-year-old partnered problem solving and its relationship to the
mathematics that emerges. Educational Studies in Mathematics, 46(1-3), 187-228.
Sfard, A.,
& Kieran, C. (2001). Cognition as communication: Rethinking
learning-by-talking through multi-faceted analysis of students' mathematical
interactions. Mind, Culture, and Activity, 8(1), 42-76.
Kieran, C., & Sfard, A. (1999). Seeing through symbols: The case of
equivalent expressions. Focus on learning problems in mathematics,
21(1), 1-17.
Kieran, C. (1995). A new look at school
algebra – past, present, and future. Journal
of Mathematical Behavior, 14, 7-12.
Dugdale, S.,
Thompson, P.W., Harvey, W., Demana, F., Waits, B.K., Kieran, C., McConnell,
J.W., & Christmas, P. (1995).
Technology and algebra curriculum reform: Current issues, potential directions,
and research questions. Journal of
Computers in Mathematics and Science Teaching, 14, 325-357.
Kieran, C. (1994). Doing and seeing things differently: A
25-year retrospective of mathematics education research on learning. Journal
for Research in Mathematics Education, 25, 583-607.
Kieran, C.,
& Hillel, J. (1990). "It's tough when you have to make
the triangles angle": Insights
from a computer-based geometry environment. Journal
of Mathematical Behavior, 9, 99-127.
Kieran, C.,
& Filloy, E. (1989). El aprendizaje del algebra escolar desde
una perspectiva psicologia. Ensenanza de las Ciencias, 7, 229-240.
Hillel, J.,
Kieran, C., & Gurtner, J.-L.
(1989). Solving structured
geometric tasks on the computer: The role of feedback in generating strategies. Educational
Studies in Mathematics, 20(1), 1-39.
Hillel, J.,
& Kieran, C. (1987). Schemas used by 12-year-olds in solving
selected turtle geometry tasks. Recherches en Didactique des MathŽmatiques,
8(1.2), 61-102.
Kieran,
C. (1981). Concepts associated with the equality
symbol. Educational Studies in Mathematics, 12(3), 317-326.
Herscovics,
N., & Kieran, C. (1980). Constructing meaning for the concept of equation. Mathematics Teacher, 73(8), 572-580.
Peer-reviewed Scientific
Papers in Conference Proceedings (a selection of conference papers from 2001
onward)
Martinez, C., & Kieran, C. (2018). Strategies used by Mexican
students in seeking structure on equivalence tasks. In T. E.
Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings of the 40th
annual meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education (pp.). Greenville,
NC: PME-NA.
Reid, D.A., Anderson, A., Thom, J., Suurtamm, C.,
Mamolo, A., Kieran, C., et al. (2014). Mathematics education in Canada: PME
2014 National Presentation. In P. Liljedahl, C. Nicol, S. Oesterle, & D.
Allan (Eds.), Proceedings of the 38th PME
and 36th PME-NA (Vol. 1, pp. 263-273). Vancouver, BC: PME et PME-NA.
Martinez, C., Guzman, J., & Kieran, C. (2013). El
papel de CAS en la promoci—n del razonimiento algebraico y en el surgimiento de
teor’a. In L. L—pez Vera (Ed.), La
Memoria del VI Seminario Nacionl de Tecnologia Computacional en la Ense–anza y el Aprendizaje de la
Matem‡tica. Nuevo LŽon, MŽxico : ComitŽ cientifico AMIUTEM.
Kieran, C., & Drijvers, P. (2012). The didactical triad of theoretical framework, mathematical topic, and
digital tool in research on learning and teaching. In Les Actes du Colloque Hommage ˆ Michle Artigue (Atelier 6:
Technologies numŽriques pour lÕenseignement des mathŽmatiques, pp. 5-24).
Paris: ComitŽ Scientifique.
https://sites.google.com/site/colloqueartigue/short-proceedings
Mart’nez, C., Kieran, C., & Guzm‡n, J.
(2012). The use of CAS in the simplification of rational expressions and
emerging paper-and-pencil techniques. In L.R. Van Zoest, J.-J. Lo, & J.L.
Kratky (Eds.), Proceedings of the 34th
annual meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education (pp. 1089-1096). Kalamazoo, MI: PME-NA.
Solares, A., & Kieran, C. (2012).
Equivalence of rational expressions: Articulating syntactic and numeric
perspectives. In T. Y. Tso (Ed.), Proceedings
of 36th Conference of the International Group for the Psychology of Mathematics
Education (Vol. 4, pp 99-106). Taipei, Taiwan: PME.
Jeannotte, D., Kieran, C.,
& Cyr, S. (2012). Composantes dÕun modle du raisonnement
mathŽmatique : un aperu. In F. Hitt & C. CortŽs (Eds.), Formation ˆ la recherche en didactique des
mathŽmatiques (pp. 72-79). Longueuil, QC : Loze-Dion.
Kieran, C., Tanguay, D., &
Solares, A. (2011). Teachers participating in a research project on learning:
The spontaneous shaping of researcher-designed resources within classroom
teaching practice. In B. Ubuz (Ed.), Proceedings
of 35th Conference of the International Group for the Psychology of Mathematics
Education (Vol. 3, pp. 81-88). Ankara, Turkey: PME Program Committee.
Guzm‡n, J., Kieran, C., &
Mart’nez, C. (2011). Simplification of rational algebraic expressions in a CAS
environment: A technical-theoretical approach. In B. Ubuz (Ed.), Proceedings of 35th Conference of the
International Grooup for the Psychology of Mathematics Education (Vol. 2,
pp. 481-488). Ankara, Turkey: PME Program Committee.
Guzm‡n, J., Kieran, C., &
Mart’nez, C. (2010). The role of Computer Algebra Systems (CAS) and a task on
the simplification of rational expressions designed with a
technical-theoretical approach. In P. Brosnan, D.B. Erchick, & L. Flevares
(Eds.), Proceedings of the 32nd PME-NA
Conference (pp. 1497-1505). Columbus, OH: PME-NA Program Committee.
Kieran, C. & Guzm‡n, J. (2009).
Developing teacher awareness of the roles of technology and novel tasks: An
example involving proofs and proving in high school algebra. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), Proceedings of the 33rd Conference of the
International Group for the Psychology of Mathematics Education (PME) (Vol.
3, pp. 321-328). Thessaloniki, Greece: PME Program Committee.
Kieran, C., Guzm‡n, J., Boileau, A.,
Tanguay, D., & Drijvers, P. (2008). Orchestrating whole-class
discussions in algebra with CAS technology. In O.
Figueras, J.-L. Cortina, S. Alatorre, T. Rojano, & A. Sepœlveda (Eds.), Proceedings of the joint 32nd PME Conference
and 30th PME-NA Conference (Vol. 3, pp. 249-256). Morelia,
Mexico: PME et PME-NA.
Kieran, C., & Damboise, C.
(2007). ÒHow can we describe
the relation between the factored form and the expanded form of these
trinomials? – We donÕt even know if our paper-and-pencil factorizations
are rightÓ: The case for Computer Algebra Systems (CAS) with weaker algebra
students. In J.H. Woo, H.C. Lew, K.S. Park, & D.Y. Seo (Eds.), Proceedings of the 31st PME (Vol.
3, pp. 105-112). Seoul, Korea: PME.
Bartlo, J., Saldanha, L., & Kieran, C.
(2007). Attending to structure and
form in algebra: Challenges in designing CAS-centered instruction that supports
construing patterns and relationships among algebraic expressions. In T.
Lamberg, & L.R. Wiest (Eds.), Proceedings
of the 29th annual meeting of the North American Chapter of the
International Group for the Psychology of Mathematics Education (CD
version). Lake Tahoe, NV: PME-NA.
Kieran, C., & Drijvers, P., with
Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzm‡n, J. (2006).
Learning about equivalence, equality and equation in a CAS environment: The
interaction of machine techniques, paper-and-pencil techniques, and theorizing.
In C. Hoyles, J.-B. Lagrange, & N. Sinclair (Eds.), Proceedings of the 17th ICMI Study, ÒDigital technologies
and mathematics teaching and learning.Ó [CD-ROM]. Hanoi, Viet-Nam: 17th
ICMI Study. Available on line:
http://icmistudy17.didirem.math.jussieu.fr/doku.php#proceedings_of_the_study_conference
Kieran, C. (2006). A response to Ôalgebraic
thinking and the generalization of patterns.Õ In S. Alatorre, J.L. Cortina, M. S‡iz,
& A. MŽndez (Eds.), Proceedings
of 28th Annual Meeting of PME-NA (invited plenary conference; CD version).
MŽrida, Mexico: PME-NA Program Committee.
Drijvers, P., & Kieran, C., with
Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., Guzm‡n, J. (2006).
Reconciling factorizations made with CAS and with paper-and-pencil: The power
of confronting two media. In J. Novotn‡, H. Moraov‡, M. Kr‡tk‡, & N.
Stehlikov‡ (Eds.), Proceedings of the 30th
PME (Vol. 2, pp. 473-480). Prague, Czech Republic: PME.
Sacristan, A. I., & Kieran, C. (2006).
BryanÕs story: Classroom miscommunication about general symbolic notation and
the emergence of a conjecture during CAS-based algebra activity. In J. Novotn‡,
H. Moraov‡, M. Kr‡tk‡, & N. Stehlikov‡ (Eds.), Proceedings
of the 30th PME (Vol. 5, pp. 1-8). Prague, Czech Republic: PME.
Kieran, C., Boileau, A., Saldanha, L.,
Hitt, F., Tanguay, D., & Guzm‡n, J. (2006). Le r™le des calculatrices
symboliques dans lÕŽmergence de la pensŽe algŽbrique : le cas des
expressions Žquivalentes. Actes du
colloque EMF2006 (Espace MathŽmatique Francophone, mai 2006). Sherbrooke,
QC : EMF.
(retrieved on 6 October, 2006, from http://ermeweb.free.fr/definitif/)
Kieran, C. (2005). Some results from the
PISA 2003 international assessment of mathematics learning: What makes items
difficult for students? In H. L. Chick & J. L. Vincent (Eds.), Proceedings of 29th PME
(plenary panel contribution, Vol. 1, pp. 83-86). Melbourne, Australia: PME.
Kieran, C., & Saldanha, L. (2005). Computer algebra
systems (CAS) as a tool for coaxing the emergence of reasoning about
equivalence of algebraic expressions. In H. L. Chick & J. L. Vincent
(Eds.), Proceedings of 29th
PME (Vol. 3, pp. 193-200). Melbourne, Australia: PME.
Saldanha, L., & Kieran. C. (2005). A
slippery slope between equivalence and equality: Exploring studentsÕ reasoning
in the context of algebraic instruction involving a computer algebra system. In
Proceedings of the 27th Annual
Meeting of PME-NA (CD version).
Roanoke, VA: PME-NA.
Kieran, C. (2004). The equation /
inequality connection in constructing meaning for inequality situations. In M.
Johnsen H¿ines & A. Berit Fuglestad (Eds.), Proceedings of 28th PME (Vol. 1, pp. 143-148). Bergen, Norway: PME.
Kieran, C., & Guzman,
J. (2004). T‰che, technique et thŽorie : Une recherche sur lÕinstrumentation de
la calculatrice ˆ affichage graphique et la co-Žmergence de la pensŽe numŽrique
chez des Žlves de 12 ˆ 15 ans. In J.B. Lagrange, M. Artigue, D. Guin, C.
Laborde, D. Lenne et L. Trouche (Eds.), IntŽgration
des technologies dans lÕenseignement des mathŽmatiques (Proceedings on-line
of the Colloque EuropŽen ITEM, Reims,
June 2003). (http://www.reims.iufm.fr/Recherche/Cadre_recherche.htm).
Proulx, J.,
Kieran, C., & Bednarz, N. (2004). Case studies of future secondary level
mathematics teachersÕ mode of explaining.
In D.E. McDougall & J.A. Ross (Eds.), Proceedings of the 26th PME-NA (pp. 1253-1264). Toronto, ON: PME-NA.
Kieran, C., & Guzman, J. (2003). The spontaneous emergence of
elementary number-theoretic concepts and techniques in interaction with
computing technology. In N.A. Pateman, B.J. Dougherty, & J. Zilliox (Eds.),
Proceedings of 27th PME (Vol.
3, pp. 141-148). Honolulu, HI: PME.
Guzman, J., & Kieran, C. (2002). The role of calculators in instrumental
genesis: The case of Nicolas and factors and divisors. In A.D. Cockburn & E. Nardi (Eds.), Proceedings of 26th PME (Vol. 3, pp.
41-48). Norwich, UK: PME.
Kieran, C. (2001). Looking at the role of technology in
facilitating the transition from arithmetic to algebraic thinking through the
lens of a model of algebraic activity. In K. Stacey, H. Chick, J. Vincent,
& J. Vincent (Eds.), Proceedings of
the 12th ICMI Study Conference on the future of the teaching and
learning of algebra (Vol. 3, pp. 713-720; this article has been translated
into Spanish in 2007 and republished in the journal Revista EMA). Melbourne, Australia: ICMI-12 Program Committee.
Hershkowitz,
R., & Kieran, C. (2001).
Algorithmic and meaningful ways of joining together representatives within the
same mathematical activity: An experience with graphing calculators. In M. van
den Heuvel-Panhuizen (Ed.), Proceedings of 25th International Conference
for the Psychology of Mathematics Education (Vol. 1, pp. 96-107). Utrecht, The Netherlands: PME.
Guzman, J.,
Kieran, C., & Squalli, H.
(2001). The
multi-line-screen calculator and the emergence of numerical strategies in
secondary 1, 2, and 3 students. In
M. van den Heuvel-Panhuizen (Ed.), Proceedings
of the 25th International Conference for the Psychology of Mathematics
Education (Vol. 1, p. 312).
Utrecht, The Netherlands: PME.