PUBLICATIONS : UNE SƒLECTION
Livres et monographies
Kieran, C. (Ed.). (2018). Teaching and learning algebraic thinking with 5- to 12-year-olds: The global
evolution of an emerging field of research and practice.
New York: Springer.
Kieran, C., Pang, J. S., Schifter, D.,
& Ng, S. F. (2016). Early algebra:
Research into its nature, its learning, its teaching. New York: Springer.
Fey,
J.T., Cuoco, A., Kieran, C., McMullin, L., & Zbiek, R.M. (Eds.). (2003). Computer algebra systems in secondary school
mathematics education. Reston,
VA: National Council of Teachers of Mathematics.
Kieran,
C., Forman, E., & Sfard, A. (Eds.). (2002). Learning discourse: Discursive approaches to research in mathematics
education. Dordrecht, The Netherlands: Kluwer Academic.
Bednarz,
N., Kieran, C., & Lee, L.
(Eds.). (1996). Approaches
to algebra: Perspectives for
research and teaching.
Dordrecht, The Netherlands: Kluwer Academic.
Kieran,
C. (Ed.). (1995). New
perspectives on school algebra:
Papers and discussions of the ICME-7 Algebra Working Group. (Journal of Mathematical Behavior--special
issue--Vol. 14, #1). Norwood, NJ:
Ablex.
Robitaille,
D., Wheeler, D., & Kieran, C.
(Eds.). (1994). Selected
lectures from the 7th International Congress on Mathematical Education. QuŽbec: Les Presses de l'UniversitŽ Laval.
Wagner, S.,
& Kieran, C. (Eds.). (1989). Research
issues in the learning and teaching of algebra. Reston, VA: National Council of Teachers
of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Chapitres de livres et contributions ˆ un ouvrage
collectif
Kieran, C. (ˆ para”tre). Task design
frameworks in mathematics education research: An example of a domain-specific
frame for algebra learning with technological tools.
Kieran, C. (2018). Part V: Preface – Planning and
assessment: Teachers and students as central actors. In A. Kajander, J. Holm, & E. J. Chernoff (Eds.), Teaching and learning
secondary school mathematics – Canadian perspectives in an international
context (pp. ). New York : Springer.
Kieran, C. (2018). Seeking,
using, and expressing structure in numbers and numerical operations: A
fundamental path to developing early algebraic thinking. In C. Kieran (Ed.), Teaching and learning algebraic
thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp.
79-105). New York: Springer.
Kieran,
C. (2018). Introduction. In C. Kieran (Ed.), Teaching and learning algebraic
thinking with 5- to 12-year-olds: The global evolution of an emerging field of research and practice (pp.
ix-xiii). New York: Springer.
Kieran, C. (2018). Conclusions and looking ahead. In
C. Kieran (Ed.), Teaching
and learning algebraic thinking with 5- to 12-year-olds: The global
evolution of an emerging field of research and practice (pp.
427-438). New York: Springer.
Kieran,
C. (2018). Algebra teaching and learning (updated and revised edition). In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp.). Dordrecht,
The Netherlands: Springer Reference
Kieran, C., Pang, J. S., Ng, S. F.,
Schifter, D., & Steinweg, A. S. (2017). Topic Study Group No. 10 :
Teaching and learning of early algebra. In G. Kaiser (Ed.), The Proceedings of the 13th International
Congress on Mathematical Education (pp. ). New York: Springer.
Kieran, C., & Kilpatrick, J. (2017).
ICMI awards ceremony. In G. Kaiser (Ed.), The
Proceedings of the 13th International Congress on Mathematical Education
(pp. ). New York: Springer.
Kieran, C. (2017). Cognitive neuroscience
and algebra: Challenging some traditional beliefs. In S. Stewart (Ed.), And the rest is just algebra (pp.
157-172). New York: Springer.
Kieran, C. (2016). Task design in
mathematics education: Frameworks and exemplars. In S. Oesterle, D. Allan,
& J. Holm (Eds.), Proceedings of the 2016
Annual Meeting of the Canadian
Mathematics Education Study Group (40th anniversary meeting, invited
plenary, pp. 45-66). Burnaby, BC: CMESG.
Kieran, C., & Drijvers, P. (2016).
Digital technology and mathematics education: Core ideas and key dimensions of
Michle ArtigueÕs theoretical work on digital tools and its impact on
mathematics education research. In B. R. Hodgson, A. Kuzniak, & J.-B.
Lagrange (Eds.), The didactics of
mathematics: Approaches and issues. A homage to Michle Artigue (pp.
123-142). New York: Springer.
Kieran, C. (2016). A historical perspective
on mathematics education research in Canada : The emergence of a
community. In P. Liljedahl et al. (Ed.), 40
Years of Canadian Mathematics Education Study Group (pp. 255-278). Burnaby,
BC: CMESG.
Kieran, C., & Towers, J. (2016). From
theory to observational data (and back again). In P. Liljedahl et al. (Ed.), 40 Years of Canadian Mathematics Education
Study Group (pp. 161-167). Burnaby, BC: CMESG.
Kieran, C., Doorman, L.M., & Ohtani, M.
(2015). Frameworks and principles for task design. In A. Watson & M. Ohtani
(Eds.), Task design in mathematics
education (pp. 19-81). New York: Springer.
Kieran, C. (2015). ICMI Awards Report. In
S. J. Cho (Ed.), The Proceedings of the
12th International Congress on Mathematical Education (pp. 13-15). New
York: Springer.
Kieran, C.
(2014). Algebra teaching
and learning. In S. Lerman (Ed.), Encyclopedia of Mathematics Education (pp. 27-32). Dordrecht,
The Netherlands: Springer Reference.
Martinez, C., Guzman, J., & Kieran, C.
(2014). El papel de CAS en la promoci—n del razonimiento algebraico y en el
surgimiento de teor’a. In L. L—pez Vera (Ed.), Tecnologia computacional en la ense–anza de las matem‡ticas (libro
electr—nico, pp. 49-56). Nuevo LŽon,
MŽxico: Publicaciones UANL (ISBN: 978-607-27-0301-8).
Kieran, C., Krainer,
K., Shaugnessy, J.M. (2013). Linking research and
practice: Teachers as key stakeholders in mathematics education research. In
M.A. Clements, A. Bishop, C. Keitel, J. Kilpatrick,
& F. Leung (Eds.), Third international handbook
of mathematics education (pp. 361-392).
Dordrecht, The Netherlands: Springer.
Kieran, C. (2013). The false dichotomy in
mathematics education between conceptual understanding and procedural skills:
An example from algebra. In K. Leatham (Ed.), Vital directions in mathematics education research (pp. 153-171).
New York: Springer.
Kieran,
C. (2013). Entretien avec Carolyn Kieran. In J. Proulx (Ed.), De la didactique des mathŽmatiques:
Entretiens avec ses batisseurs (pp. 145-169). QuŽbec, QC: Presses de
lÕUniversitŽ du QuŽbec.
Kieran, C. (2012). Algebra teaching and learning. Encyclopedia of Mathematics Education.
Springer: SpringerReference. http://www.springerreference.com/docs/html/chapterdbid/313185.html
Kieran, C., Tanguay, D., & Solares, A.
(2012). Researcher-designed resources and their adaptation within classroom
teaching practice: Shaping both the implicit and the explicit. In G. Gueudet,
B. Pepin, & L. Trouche (Eds.), From
text to ÔlivedÕ resources : Mathematics curriculum material and teacher
development (pp. 189-213). New
York: Springer.
Kieran, C. (2011). Overall commentary on
early algebraization: Perspectives for research and teaching. In J. Cai &
E. Knuth (Eds.), Early algebraization: A
global dialogue from multiple perspectives (pp. 579-593). New York:
Springer.
Kieran, C., & Guzman, J. (2010). Role of task and technology in provoking
teacher change: A case of proofs and proving in high school algebra. In R.
Leikin & R. Zazkis (Eds.), Learning
through teaching mathematics: Development of teachersÕ knowledge and expertise
in practice (pp. 127-152). New
York: Springer.
Drijvers, P., Kieran, C.,
& Mariotti, M.-A. (2009). Integrating technology into mathematics
education: Theoretical perspectives. In C. Hoyles
& J.-B. Lagrange (Eds.), Mathematics
education and technology: Rethinking the terrain (pp. 89-132). New York:
Springer.
Kieran,
C., & Saldanha, L. (2008). Designing tasks for the co-development of
conceptual and technical knowledge in CAS activity: An example from factoring.
In K. Heid & G.W. Blume (Eds.), Research
on technology and the teaching and learning of mathematics: Syntheses, cases,
and perspectives (Vol. 2, pp. 393-414). Greenwich, CT: Information Age
Publishing.
Kieran, C. (2007). Learning and teaching algebra at the middle school
through college levels: Building meaning for symbols and their manipulation. In
F. K. Lester, Jr., (Ed.), Second handbook
of research on mathematics teaching and learning (pp. 707-762). Greenwich, CT: Information Age Publishing.
Kieran, C.,
& Guzman, J. (2007). Interaction entre calculatrice technique et thŽorie :
ƒmergence de structures numŽriques chez des Žlves de 12 ˆ 15 ans dans un
environnement calculatrice. In R. Floris & F. Conne (Eds.), Environnements informatiques, enjeux pour
lÕenseignement des mathŽmatiques (pp. 61-74). Genve: deBoeck.
Kieran,
C. (2006). Research on the learning and teaching of algebra. In A. GutiŽrrez
& P. Boero (Eds.), Handbook of
research on the psychology of mathematics education (pp. 11-50). Rotterdam:
Sense.
Kieran,
C., & Guzman, J. (2006). The number-theoretic experience of 12- to
15-year-olds in a calculator environment: The intertwining co-emergence of
technique and theory. In R. Zazkis & S. R. Campbell (Eds.), Number theory in mathematics education (pp.
173-200). Mahwah, NJ: Lawrence Erlbaum.
Kieran,
C., & Guzman, J. (2005). Five steps to zero: Students developing elementary
number theory concepts when using calculators. In Wm.J. Masalski (Ed.), Technology-supported mathematics learning environments
(Sixty-seventh Yearbook of the National Council of Teachers of Mathematics, pp.
35-50). Reston, VA: The Council.
Kieran,
C. (2004). The core of algebra: Reflections on its main activities. In K. Stacey, H. Chick, & M. Kendal
(Eds.), The future of the teaching and
learning of algebra: The 12th ICMI study (pp. 21-34). Dordrecht, The Netherlands: Kluwer.
Kieran,
C., & Yerushalmy, M. (2004). Research on the role of technological
environments in algebra learning and teaching. In K. Stacey, H. Chick, & M.
Kendal (Eds.), The future of the teaching
and learning of algebra: The 12th ICMI study (pp. 99-152). Dordrecht, The Netherlands: Kluwer.
Kieran,
C. (2003). The twentieth century emergence of the
Canadian mathematics education research community. In G. Stanic & J. Kilpatrick (Eds.),
A history of school mathematics (pp.
1701-1778). Reston, VA: National
Council of Teachers of Mathematics.
Cedillo,
T., & Kieran, C. (2003). Initiating students into algebra with
symbol-manipulating calculators. In
J.T. Fey et al. (Eds.), Computer algebra
systems in secondary school mathematics education (pp. 219-239). Reston, VA: National Council of Teachers
of Mathematics.
Kieran,
C. (2003). The transition from arithmetic to
algebra: A model for conceptualizing school algebra and the role of computer
technology in supporting the development of algebraic thinking. In E. Filloy (Ed.), Matem‡tica educativa: Aspectos de la investigaci—n actual (pp.
121-142). Mexico City: Fondo de
Cultura Econ—mica.
Kieran,
C. (2002). Exploring the
mathematical discourse of 13-year-old partnered problem solving and its
relationship to the mathematics that emerges. In C. Kieran, E. Forman, & A. Sfard
(Eds.), Learning discourse: Discursive
approaches to research in mathematics education (pp. 187-228). Dordrecht,
The Netherlands: Kluwer Academic.
Kieran, C. (2002). A
historical perspective on mathematics education research in Canada: The
emergence of a community. In E.
Simmt & B. Davis (Eds.), The 25th
anniversary conference of the Canadian Mathematics Education Study Group
(pp. 165-186). Kingston, ON: CMESG
Program Committee.
Sfard, A., & Kieran, C.
(2001). Preparing teachers for handling students' mathematical
communication: Gathering knowledge
and building tools. In F. L. Lin
& T. J. Cooney (Eds.), Making sense
of mathematics teacher education (pp. 187-205). Dordrecht, The Netherlands: Kluwer.
Kieran, C. (1998). Models in mathematics education
research: A broader view of research results. In A. Sierpinska & J. Kilpatrick
(Eds.), Mathematics education as a
research domain: A search for identity (Vol 1, pp. 213-225). Dordrecht, The Netherlands: Kluwer
Academic.
Kieran, C. (1997). Mathematical concepts at the secondary
school level: The learning of
algebra and functions. In T. Nunes
& P. Bryant (Eds.), Learning and
teaching mathematics: An international perspective (pp. 133-158). East Sussex, UK: Psychology Press.
Bednarz,
N., Kieran, C., & Lee, L.
(1996). Approaches to
algebra: Perspectives for research and teaching. In N. Bednarz, C. Kieran, & L. Lee
(Eds.), Approaches to algebra:
Perspectives for research and teaching (pp. 3-14). Dordrecht, The Netherlands: Kluwer.
Kieran, C.,
Boileau, A., & Garanon, M. (1996). Introducing algebra by means of a
technology-supported, functional approach.
In N. Bednarz, C. Kieran, & L. Lee (Eds.), Approaches to algebra:
Perspectives for research and teaching (pp. 257-293). Dordrecht, The Netherlands: Kluwer.
Kieran, C. (1996). The changing face of school
algebra. In C. Alsina, J. Alvarez,
B. Hodgson, C. Laborde, & A. Perez (Eds.), 8th International Congress on Mathematical Education, Selected Lectures
(pp. 271-290). Sevilla, Spain: S.A.E.M. Thales.
Kieran,
C., & Chalouh, L. (1993). The transition from arithmetic to
algebra. In D. T. Owens (Ed.), Research ideas for the classroom: Middle grades mathematics (pp.
179-198). New York: Macmillan.
Kieran,
C. (1993). Functions, graphing, and
technology: Integrating research on
learning and instruction. In T. A.
Romberg, E. Fennema, & T. P. Carpenter (Eds.), Integrating research on the graphical representation of functions
(pp. 189-237). Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C. (1992). The learning and
teaching of school algebra. In D.
A. Grouws (Ed.), Handbook of research on
mathematics teaching and learning (pp. 390-419). New York:
Macmillan (ce chapitre a ŽtŽ traduit ˆ lÕespagnol, au franais et au
japonais).
Kieran,
C. (1990). Cognitive processes involved in learning
school algebra. In P. Nesher &
J. Kilpatrick (Eds.), Mathematics and
cognition: A research synthesis by
the International Group for the Psychology of Mathematics Education (pp.
96-112). Cambridge, UK: Cambridge University Press.
Kieran,
C. (1990). Perspectives on
mathematical literacy. In S. P.
Norris & L. M. Phillips (Eds.), Foundations
of literacy policy in Canada (pp. 109-126). Calgary, AB: Detselig.
Wagner,
S., & Kieran, C. (1989). An agenda for research on the learning
and teaching of algebra. In S.
Wagner & C. Kieran (Eds.), Research
issues in the learning and teaching of algebra (pp. 220-237). Reston, VA: National Council of Teachers
of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C., & Wagner, S. (1989). The
Research Agenda Conference on Algebra: Background and issues. In S. Wagner
& C. Kieran (Eds.), Research issues
in the learning and teaching of algebra (pp. 1-10). Reston, VA: National
Council of Teachers of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C. (1989). The early learning of algebra: A
structural perspective. In S.
Wagner & C. Kieran (Eds.), Research
issues in the learning and teaching of algebra (pp. 35-56). Reston, VA: National Council of Teachers
of Mathematics; Hillsdale, NJ: Lawrence Erlbaum.
Kieran,
C. (1988). Two different approaches
among algebra learners. In A.F.
Coxford (Ed.), The ideas of algebra, K-12
(Yearbook of the National Council of Teachers of Mathematics, pp.
91-96). Reston, VA: NCTM.
Groen,
G., & Kieran, C. (1983). In search of Piagetian mathematics. In H. Ginsburg (Ed.), The development of mathematical thinking (pp.
351-375). New York: Academic Press.
Articles publiŽs dans les revues avec comitŽ de lecture
Jeannotte,
D., & Kieran, C. (2017). A
conceptual model of mathematical reasoning for school mathematics. Educational Studies in Mathematics, 96, 1-16.
Kieran,
C. (2014). What Does Research Tell Us About Fostering Algebraic
Reasoning in School Algebra?
Research brief published on the web site of the National Council of Teachers of
Mathematics; retrieved on September 5, 2014, from http://www.nctm.org/news/content.aspx?id=42323
Kieran,
C. (2014). What Does Research Tell Us About Fostering Algebraic
Thinking in Arithmetic? Research
brief published on the web site of the National Council of Teachers of
Mathematics; retrieved on September 5, 2014, from http://www.nctm.org/news/content.aspx?id=42315
Solares,
A., & Kieran, C. (2013). Articulating syntactic and numeric perspectives on
equivalence: The case of rational expressions. Educational Studies in Mathematics, 84(1), 115-148. DOI: 10.1007/s10649-013-9473-7.
Kieran,
C., Boileau, A., Tanguay, D., & Drijvers, P. (2013). Design researchersÕ
documentational genesis in a study on equivalence of algebraic expressions. ZDM, The International Journal on
Mathematics Education, 45, 1045-1056. DOI: 10.1007/s11858-013-0516-4.
Guzman,
J., & Kieran, C. (2013). Becoming aware of mathematical gaps in new
curricular materials: A resource-based analysis of teaching practice. The Mathematics Enthusiast, 10(1&2),
163-190.
Kieran, C.
(2012). Commentary: Characterizing meta-level mathematical discourse and
accounting theoretically for its development – The instructional and the
spontaneous. International Journal of
Educational Research, 51–52, 146–150.
Kieran,
C. (2011). Note de lecture ˆ propos de Ç Ressources vives - le travail
documentaire des professeurs en mathŽmatiques È. Recherches en Didactique des MathŽmatiques, 31(1), 131-134.
Hitt,
F., & Kieran, C. (2009). Constructing knowledge via a peer interaction in a
CAS environment with tasks designed from a Task-Technique-Theory perspective. International Journal of Computers for
Mathematical Learning, 14, 121-152. (disponible en ligne de Springer Online
http://dx.doi.org/10.1007/s10758-009-9151-0)
Kieran, C. (2007). Developing
algebraic reasoning: The role of sequenced tasks and teacher questions from the
primary to the early secondary school levels. Quadrante, XVI(1), 5-26.
Kieran, C. (2007).
Interpreting and assessing the answers given by the CAS expert. The International Journal for Technology in
Mathematics Education, 14, 103-107 (CAME 4 Special Issue, edited by M.K.
Heid).
Kieran, C., & Drijvers,
P., with Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzm‡n, J.
(2006). The co-emergence of machine techniques, paper-and-pencil techniques,
and theoretical reflection: A study of CAS use in secondary school algebra. International Journal of Computers for
Mathematical Learning, 11, 205-263.
Proulx, J., Descamps-Bednarz,
N., & Kieran, C. (2006). CaractŽristiques
des explications orales en classe de mathŽmatiques. Canadian Journal
of Science, Mathematics and Technology Education, 6, 267-292.
Kieran, C. (2004). Algebraic
thinking in the early grades: What is it?
The Mathematics Educator, 8(1), 139-151.
Guzman, J., Kieran, C., & Squalli, H.
(2003). La calculadora con pantalla multilinea y el surgimento de estrategias
numŽricas en alumnus de primero, segundo y tercer a–o de secundaria. Revista Educaci—n Matem‡tica, 15(2).
105-128.
Hershkowitz, R., & Kieran, C. (2002). Fusionner des reprŽsentations
mathŽmatiques machinalement ou en rŽflŽchissant : expŽriences dÕutilisation de
calculatrices graphiques. Sciences et techniques
Žducatives, 9(1-2),
201-218.
Kieran,
C. (2001). Exploring the
mathematical discourse of 13-year-old partnered problem solving and its
relationship to the mathematics that emerges. Educational
Studies in Mathematics, 46(1-3),
187-228.
Sfard,
A., & Kieran, C. (2001). Cognition as communication: Rethinking
learning-by-talking through multi-faceted analysis of students' mathematical
interactions. Mind, Culture, and Activity, 8(1), 42-76.
Kieran, C., & Sfard,
A. (1999). Seeing through symbols: The case of
equivalent expressions. Focus on learning problems in mathematics,
21(1), 1-17.
Kieran, C. (1995). A new look
at school algebra – past, present, and future. Journal of Mathematical Behavior, 14, 7-12.
Dugdale,
S., Thompson, P.W., Harvey, W., Demana, F., Waits, B.K., Kieran, C., McConnell,
J.W., & Christmas, P. (1995).
Technology and algebra curriculum reform: Current issues, potential directions,
and research questions. Journal of
Computers in Mathematics and Science Teaching, 14, 325-357.
Kieran, C. (1994). Doing and seeing things differently: A
25-year retrospective of mathematics education research on learning. Journal
for Research in Mathematics Education, 25, 583-607.
Kieran,
C., & Hillel, J. (1990). "It's tough when you have to make
the triangles angle": Insights
from a computer-based geometry environment. Journal
of Mathematical Behavior, 9, 99-127.
Kieran,
C., & Filloy, E. (1989). El aprendizaje del algebra escolar desde
una perspectiva psicologia. Ensenanza de las Ciencias, 7, 229-240.
Hillel,
J., Kieran, C., & Gurtner, J.-L.
(1989). Solving structured
geometric tasks on the computer: The role of feedback in generating
strategies. Educational Studies in Mathematics, 20(1), 1-39.
Hillel,
J., & Kieran, C. (1987). Schemas used by 12-year-olds in solving
selected turtle geometry tasks. Recherches en Didactique des MathŽmatiques,
8(1.2), 61-102.
Kieran,
C. (1981). Concepts associated with the equality
symbol. Educational Studies in Mathematics, 12(3), 317-326.
Herscovics,
N., & Kieran, C. (1980). Constructing meaning for the concept of equation. Mathematics
Teacher, 73(8), 572-580.
Comptes-rendus de
confŽrences scientifiques avec comitŽ de lecture (une sŽlection de
comptes-rendus depuis 2001)
Martinez, C., & Kieran, C. (2018). Strategies used by Mexican
students in seeking structure on equivalence tasks. In T. E.
Hodges, G. J. Roy, & A. M. Tyminski (Eds.), Proceedings of the 40th
annual meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education (pp.). Greenville,
NC: PME-NA.
Reid, D.A., Anderson, A., Thom, J., Suurtamm, C.,
Mamolo, A., Kieran, C., et al. (2014). Mathematics education in Canada: PME
2014 National Presentation. In P. Liljedahl, C. Nicol, S. Oesterle, & D.
Allan (Eds.), Proceedings of the 38th PME
and 36th PME-NA (Vol. 1, pp. 263-273). Vancouver, BC: PME et PME-NA.
Martinez, C., Guzman, J., & Kieran, C. (2013). El
papel de CAS en la promoci—n del razonimiento algebraico y en el surgimiento de
teor’a. In L. L—pez Vera (Ed.), La Memoria
del VI Seminario Nacionl de Tecnologia Computacional en la Ense–anza y el Aprendizaje de la
Matem‡tica. Nuevo LŽon, MŽxico : ComitŽ cientifico AMIUTEM.
Kieran, C., & Drijvers, P. (2012). The didactical triad of theoretical
framework, mathematical topic, and digital tool in research on learning and
teaching. In Les
Actes du Colloque Hommage ˆ Michle Artigue (Atelier 6: Technologies
numŽriques pour lÕenseignement des mathŽmatiques, pp. 5-24). Paris: ComitŽ
Scientifique. https://sites.google.com/site/colloqueartigue/short-proceedings
Mart’nez, C., Kieran, C., & Guzm‡n, J.
(2012). The use of CAS in the simplification of rational expressions and
emerging paper-and-pencil techniques. In L.R. Van Zoest, J.-J. Lo, & J.L.
Kratky (Eds.), Proceedings of the 34th
annual meeting of the North American Chapter of the International Group for the
Psychology of Mathematics Education (pp. 1089-1096). Kalamazoo, MI: PME-NA.
Solares, A., & Kieran, C. (2012).
Equivalence of rational expressions: Articulating syntactic and numeric
perspectives. In T. Y. Tso (Ed.), Proceedings
of 36th Conference of the International Group for the Psychology of Mathematics
Education (Vol. 4, pp 99-106). Taipei, Taiwan: PME.
Jeannotte, D., Kieran, C.,
& Cyr, S. (2012). Composantes dÕun modle du raisonnement
mathŽmatique : un aperu. In F. Hitt & C. CortŽs (Eds.), Formation ˆ la recherche en didactique des
mathŽmatiques (pp. 72-79). Longueuil, QC : Loze-Dion.
Kieran, C., Tanguay, D., &
Solares, A. (2011). Teachers participating in a research project on learning:
The spontaneous shaping of researcher-designed resources within classroom
teaching practice. In B. Ubuz (Ed.), Proceedings
of 35th Conference of the International Group for the Psychology of Mathematics
Education (Vol. 3, pp. 81-88). Ankara, Turkey: PME Program Committee.
Guzm‡n, J., Kieran, C., &
Mart’nez, C. (2011). Simplification of rational algebraic expressions in a CAS
environment: A technical-theoretical approach. In B. Ubuz (Ed.), Proceedings of 35th Conference of the International
Grooup for the Psychology of Mathematics Education (Vol. 2, pp. 481-488).
Ankara, Turkey: PME Program Committee.
Guzm‡n, J., Kieran, C., &
Mart’nez, C. (2010). The role of Computer Algebra Systems (CAS) and a task on
the simplification of rational expressions designed with a
technical-theoretical approach. In P. Brosnan, D.B. Erchick, & L. Flevares
(Eds.), Proceedings of the 32nd PME-NA
Conference (pp. 1497-1505). Columbus, OH: PME-NA Program Committee.
Kieran, C. & Guzm‡n, J.
(2009). Developing teacher awareness of the roles of technology and novel
tasks: An example involving proofs and proving in high school algebra. In M. Tzekaki, M. Kaldrimidou, &
H. Sakonidis (Eds.), Proceedings of the
33rd Conference of the International Group for the Psychology of Mathematics
Education (PME) (Vol. 3, pp. 321-328). Thessaloniki, Greece: PME Program
Committee.
Kieran, C., Guzm‡n, J., Boileau, A.,
Tanguay, D., & Drijvers, P. (2008). Orchestrating whole-class
discussions in algebra with CAS technology. In O.
Figueras, J.-L. Cortina, S. Alatorre, T. Rojano, & A. Sepœlveda (Eds.), Proceedings of the joint 32nd PME Conference
and 30th PME-NA Conference (Vol. 3, pp. 249-256). Morelia,
Mexico: PME et PME-NA.
Kieran, C., & Damboise, C.
(2007). ÒHow can we describe
the relation between the factored form and the expanded form of these
trinomials? – We donÕt even know if our paper-and-pencil factorizations
are rightÓ: The case for Computer Algebra Systems (CAS) with weaker algebra
students. In J.H. Woo, H.C. Lew, K.S. Park, & D.Y. Seo (Eds.), Proceedings of the 31st PME (Vol.
3, pp. 105-112). Seoul, Korea: PME.
Bartlo, J., Saldanha, L.,
& Kieran, C. (2007). Attending
to structure and form in algebra: Challenges in designing CAS-centered
instruction that supports construing patterns and relationships among algebraic
expressions. In T. Lamberg, & L.R. Wiest (Eds.), Proceedings of the 29th annual meeting of the North American
Chapter of the International Group for the Psychology of Mathematics Education
(CD version). Lake Tahoe, NV: PME-NA.
Kieran, C., & Drijvers,
P., with Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., & Guzm‡n, J.
(2006). Learning about equivalence, equality and equation in a CAS environment:
The interaction of machine techniques, paper-and-pencil techniques, and
theorizing. In C. Hoyles, J.-B. Lagrange, & N. Sinclair (Eds.), Proceedings of the 17th ICMI
Study, ÒDigital technologies and mathematics teaching and learning.Ó
[CD-ROM]. Hanoi, Viet-Nam: 17th ICMI Study. Disponible en-ligne :
http://icmistudy17.didirem.math.jussieu.fr/doku.php#proceedings_of_the_study_conference
Kieran, C. (2006). A response
to Ôalgebraic thinking and the generalization of patterns.Õ In S. Alatorre, J.L. Cortina, M. S‡iz,
& A. MŽndez (Eds.), Proceedings
of 28th Annual Meeting of PME-NA (confŽrence plŽnire invitŽe; CD version).
MŽrida, Mexico: PME-NA Program Committee.
Drijvers, P., & Kieran, C., with
Boileau, A., Hitt, F., Tanguay, D., Saldanha, L., Guzm‡n, J. (2006).
Reconciling factorizations made with CAS and with paper-and-pencil: The power
of confronting two media. In J. Novotn‡, H. Moraov‡, M. Kr‡tk‡, & N.
Stehlikov‡ (Eds.), Proceedings of the 30th
PME (Vol. 2, pp. 473-480). Prague, Czech Republic: PME.
Sacristan, A. I., & Kieran, C. (2006).
BryanÕs story: Classroom miscommunication about general symbolic notation and
the emergence of a conjecture during CAS-based algebra activity. In J. Novotn‡,
H. Moraov‡, M. Kr‡tk‡, & N. Stehlikov‡ (Eds.), Proceedings
of the 30th PME (Vol. 5, pp. 1-8). Prague, Czech Republic: PME.
Kieran, C., Boileau, A., Saldanha, L.,
Hitt, F., Tanguay, D., & Guzm‡n, J. (2006). Le r™le des calculatrices
symboliques dans lÕŽmergence de la pensŽe algŽbrique : le cas des
expressions Žquivalentes. Actes du
colloque EMF2006 (Espace MathŽmatique Francophone, mai 2006). Sherbrooke,
QC : EMF.
(au
6 octobre, 2006, de http://ermeweb.free.fr/definitif/)
Kieran, C. (2005). Some
results from the PISA 2003 international assessment of mathematics learning:
What makes items difficult for students? In H. L. Chick & J. L. Vincent
(Eds.), Proceedings of 29th
PME (plenary panel contribution, Vol. 1, pp. 83-86). Melbourne, Australia:
PME.
Kieran, C., & Saldanha, L. (2005). Computer algebra
systems (CAS) as a tool for coaxing the emergence of reasoning about
equivalence of algebraic expressions. In H. L. Chick & J. L. Vincent
(Eds.), Proceedings of 29th
PME (Vol. 3, pp. 193-200). Melbourne, Australia: PME.
Saldanha, L., & Kieran. C.
(2005). A slippery slope between equivalence and equality: Exploring studentsÕ
reasoning in the context of algebraic instruction involving a computer algebra
system. In Proceedings of the 27th
Annual Meeting of PME-NA (CD version).
Roanoke, VA: PME-NA.
Kieran, C. (2004). The equation /
inequality connection in constructing meaning for inequality situations. In M.
Johnsen H¿ines & A. Berit Fuglestad (Eds.), Proceedings of 28th PME (Vol. 1, pp. 143-148). Bergen, Norway: PME.
Kieran, C., & Guzman, J. (2004). T‰che,
technique et thŽorie : Une recherche sur lÕinstrumentation de la calculatrice ˆ
affichage graphique et la co-Žmergence de la pensŽe numŽrique chez des Žlves
de 12 ˆ 15 ans. In J.B. Lagrange, M. Artigue, D. Guin, C. Laborde, D. Lenne et
L. Trouche (Eds.), IntŽgration des
technologies dans lÕenseignement des mathŽmatiques (Actes en ligne du
Colloque EuropŽen ITEM, Reims, juin
2003). (http://www.reims.iufm.fr/Recherche/Cadre_recherche.htm).
Proulx,
J., Kieran, C., & Bednarz, N. (2004). Case studies of future secondary
level mathematics teachersÕ mode of explaining. In D.E. McDougall & J.A. Ross
(Eds.), Proceedings of the 26th PME-NA (pp.
1253-1264). Toronto, ON: PME-NA.
Kieran, C., & Guzman,
J. (2003). The spontaneous
emergence of elementary number-theoretic concepts and techniques in interaction
with computing technology. In N.A. Pateman, B.J. Dougherty, & J. Zilliox
(Eds.), Proceedings of 27th
PME (Vol. 3, pp. 141-148).
Honolulu, HI: PME.
Guzman, J., & Kieran, C. (2002). The role of calculators in instrumental
genesis: The case of Nicolas and factors and divisors. In A.D. Cockburn & E. Nardi (Eds.), Proceedings of 26th PME (Vol. 3, pp.
41-48). Norwich, UK: PME.
Kieran, C. (2001). Looking at the role of technology in
facilitating the transition from arithmetic to algebraic thinking through the
lens of a model of algebraic activity. In K. Stacey, H. Chick, J. Vincent,
& J. Vincent (Eds.), Proceedings of
the 12th ICMI Study Conference on the future of the teaching and
learning of algebra (Vol. 3, pp. 713-720; cet article a ŽtŽ traduit ˆ
lÕespagnol en 2007 et republiŽ dans la revue Revista EMA). Melbourne, Australia: ICMI-12 Program Committee.
Hershkowitz,
R., & Kieran, C. (2001).
Algorithmic and meaningful ways of joining together representatives within the
same mathematical activity: An experience with graphing calculators. In M. van
den Heuvel-Panhuizen (Ed.), Proceedings of 25th International Conference
for the Psychology of Mathematics Education (Vol. 1, pp. 96-107). Utrecht, The Netherlands: PME.
Guzman, J., Kieran, C., & Squalli, H. (2001). The multi-line-screen calculator and the emergence of numerical strategies in secondary 1, 2, and 3 students. In M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th International Conference for the Psychology of Mathematics Education (Vol. 1, p. 312). Utrecht, The Netherlands: PME.