Séance de travaux pratiques II

Le samedi 27 janvier 2024

- 1. Donner l'exemple d'une fonction $f:[a,b]\to\mathbb{R}$ ne possédant ni minimum, ni maximum.
- 2. Soit $f:[a,b] \to \mathbb{R}$ une fonction continue qui est dérivable sur [a,b] et telle que f(a) f(b) < 0.
 - (a) Montrer qu'il existe $c \in]a, b[$ tel que f(c) = 0.
 - (b) Si $f'(x) \neq 0$ pour tout $x \in]a,b[$, utiliser le théorème de Rolle pour montrer que la fonction f s'annule en un seul point sur l'intervalle [a,b].
 - (c) Montrer que la fonction $g(x) = \arctan(x^5 + x + 3)$ s'annule en un unique point sur l'intervalle [-2, 2].
- 3. Utiliser le théorème de Lagrange pour établir les inégalités suivantes :
 - (a) $\tan x > x$ pour $x \in]0, \frac{\pi}{2}[$;
 - (b) $(1+x)^n > (1+nx)$ pour x > 0 et n > 1;
 - (c) $|\sin b \sin a| \le |b a|$ pour tous $a, b \in \mathbb{R}$.
- 4. Soient $f(x) = x^3 + 1$ et $g(x) = x^2 1$. Montrer que

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = -1, \quad \text{mais que} \quad \lim_{x \to 0} \frac{f'(x)}{g'(x)} = 0.$$

Cela contradit-il la règle de l'Hôpital?

- 5. Déterminer la forme de l'indétermination (i.e. $0/0, \infty/\infty, 0 \cdot \infty, 0^0, \infty^0$ ou 1^∞) et utiliser la règle de l'Hôpital pour calculer les limites suivantes :
 - (a) $\lim_{x \to 0} \frac{\arcsin x}{x}$;
 - (b) $\lim_{x \to +\infty} \frac{\ln x^3}{\ln(x+2)}$;
 - (c) $\lim_{x \to +\infty} x^2 e^{-x^2};$
 - (d) $\lim_{x \to 3+} \left(\frac{x}{x-3} \frac{1}{\ln(x-3)} \right);$ (e) $\lim_{x \to 0^+} x^{\sin x};$

 - (f) $\lim_{x \to 1^-} \left(\ln \left(\frac{1}{1-x} \right) \right)^{1-x}$;
 - (g) $\lim_{x \to \frac{\pi}{2}^{-}} (1 + \cos x)^{\tan x}$.