Séance de travaux pratiques XII

Le jeudi 5 décembre 2013

1. Soit $\{E_n\}_{n\in\mathbb{N}}$ une suite d'ensembles mesurables emboîtés, c'est-à-dire que $E_{n+1}\subset E_n$ pour tout $n\in\mathbb{N}$. Si $\mathfrak{m}E_1<+\infty$, montrer que

$$\mathfrak{m}\left(\bigcap_{i=1}^{\infty} E_n\right) = \lim_{n \to \infty} \mathfrak{m} E_n.$$

- 2. Si $f_n: D \to \mathbb{R}$ est une suite de fonctions mesurables, montrer que $g(x) = \sup_{n \in \mathbb{N}} f_n(x)$ est une fonction mesurable.
- 3. Soit $f: D \to \mathbb{R}$ une fonction mesurable. Soit $g: D \to \mathbb{R}$ une fonction telle que g(x) = f(x) presque partout, c'est-à-dire que l'ensemble $\{x \mid f(x) = g(x)\}$ est de mesure nulle. Montrer alors que g est aussi une fonction mesurable.
- 4. Soit $f: D \to [0, +\infty)$ une fonction mesurable.
 - (a) Si $\int_D f = 0$, montrer que pour $\alpha > 0$, l'ensemble $\{x \in D \mid f(x) \ge \alpha\}$ est de mesure nulle.
 - (b) Conclure que f(x) = 0 presque partout si et seulement si $\int_D f = 0$.
- 5. Soit $f_n: D \to [0, +\infty)$ une suite de fonctions mesurables convergeant ponctuellement vers une fonction $f: D \to [0, +\infty)$. Si $f_n(x) \le f(x)$ pour tout n et tout x, montrer alors que $\int_D f = \lim_{n \to \infty} \int_D f_n.$
- 6. Donner un exemple d'une suite croissante de fonctions $f_n : [0,1] \to [0,+\infty)$ intégrables au sens de Riemann convergeant ponctuellement vers une fonction $f : [0,1] \to \mathbb{R}$ qui n'est pas intégrable au sens de Riemann. Cela montre qu'il n'y a pas de «théorème de convergence monotone» pour l'intégrale de Riemann.
- 7. Soit $f: D \to \mathbb{R}$ une fonction mesurable. Montrer alors que |f| est une fonction mesurable.
- 8. Soit $f_n: D \to \mathbb{R}$ une suite de fonctions mesurables et $f: D \to \mathbb{R}$ une fonction mesurable telle que

$$\lim_{n \to \infty} \int_D |f - f_n| = 0.$$

(a) Montrer que f_n converge vers f en mesure, c'est-à-dire que pour tout $\epsilon > 0$, il existe $N \in \mathbb{N}$ tel que

$$n \ge N \implies \mathfrak{m}\{x \mid |f(x) - f_n(x)| \ge \epsilon\} < \epsilon.$$

(b) En déduire qu'il existe une sous suite f_{n_k} convergeant vers f presque partout.