Séance de travaux pratiques IV

Le jeudi 7 octobre 2021

- 1. On définit la droite projective réelle, dénotée par \mathbb{RP}^1 , comme étant l'ensemble des droites de \mathbb{R}^2 passant par l'origine. Montrer qu'en tant qu'ensemble, le plan projectif \mathbb{RP}^2 peut être vu comme l'union disjointe du plan affine \mathbb{R}^2 avec la droite projective \mathbb{RP}^1 . À quoi correspond \mathbb{RP}^1 dans cette décomposition de \mathbb{RP}^2 ?
- 2. Montrer qu'une droite L de \mathbb{RP}^2 , en tant qu'ensemble de points de \mathbb{RP}^2 , est de la forme

$$L = \{ [x : y : z] \in \mathbb{RP}^2 \mid ax + by + cz = 0 \}$$

pour un certain $(a, b, c) \in \mathbb{R}^3 \setminus \{0\}$. On dit que L a pour équation ax + by + cz = 0.

3. Montrer que la droite L passant par les points $P = [p_0 : p_1 : p_2]$ et $Q = [q_0 : q_1 : q_2]$ dans \mathbb{RP}^2 a pour équation

$$\det \begin{pmatrix} x & y & z \\ p_0 & p_1 & p_2 \\ q_0 & q_1 & q_2 \end{pmatrix} = 0.$$

Déterminer quelle est l'équation de la droite passant par les points [1:0:0] et [1:1:1].

- 4. Dénotons par $(\mathbb{RP}^2)^*$ l'ensemble des droites de \mathbb{RP}^2 .
 - (a) Montrer que l'application $\mathcal{D}: \mathbb{RP}^2 \to (\mathbb{RP}^2)^*$ qui à $[\vec{u}] = [a:b:c] \in \mathbb{RP}^2$ associe la droite $\mathcal{D}([\vec{u}])$ d'équation ax + by + cz = 0 est bien définie, c'est-à-dire que $\mathcal{D}([\vec{u}])$ ne dépend pas du choix de représentant \vec{u} , mais seulement de la classe d'équivalence $[\vec{u}]$.
 - (b) Montrer que $\mathcal{D}: \mathbb{RP}^2 \to (\mathbb{RP}^2)^*$ est une bijection.
 - (c) Montrer qu'en termes géométriques, cette bijection correspond à associer à une droite L de \mathbb{R}^3 passant par l'origine le plan L^{\perp} de \mathbb{R}^3 perpendiculaire à cette droite et passant par l'origine.
- 5. Une **corrélation** (ou **dualité**) sur le plan projectif est une transformation φ des points en droites et des droites en points qui préserve l'incidence, c'est-à-dire que si le point P appartient à la droite L, alors le point $\varphi(L)$ appartient à la droite $\varphi(P)$. Une **polarité** est une corrélation φ qui est involutive, c'est-à-dire telle que $\varphi^{-1} = \varphi$.
 - (a) Soit φ la transformation qui à $P \in \mathbb{RP}^2$ associe la droite $\mathcal{D}(P)$ et qui à une droite projective L associe le point $\mathcal{D}^{-1}(L)$, où \mathcal{D} est l'application définie au numéro précédent. Si A,B sont des points distincts de \mathbb{RP}^2 , montrer que $\varphi(AB)$ est le point où les droites $\varphi(A)$ et $\varphi(B)$ se coupent.
 - (b) De même, si L_1 et L_2 sont des droites projectives distinctes, montrer que $\varphi(L_1 \cap L_2)$ est la droite passant par les points $\varphi(L_1)$ et $\varphi(L_2)$.

- (c) En déduire que φ est une polarité.
- 6. On considère le cône $\mathcal{C} := \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = z^2\}$ dans \mathbb{R}^3 . Si Π est un plan de \mathbb{R}^3 ne passant pas par l'origine, alors $\Pi \cap \mathcal{C}$ est par définition une conique propre.
 - (a) Que devrait être la version projective de cette conique?
 - (b) Cette version projective dépend-elle du choix du plan Π ?