Séance de travaux pratiques VIII

Le jeudi 2 avril 2020

- 1. Soit V un espace vectoriel. Pour q impair, montrer que $w \wedge w = 0$ pour tout $w \in \Lambda^q V$.
- 2. Soit $\{e_1, \ldots, e_n\}$ la base canonique de \mathbb{R}^n muni de son produit scalaire usuel. Soient w_1, \ldots, w_n des vecteurs de \mathbb{R}^n de sorte que

$$w_1 \wedge \dots \wedge w_n = ce_1 \wedge \dots \wedge e_n \tag{1}$$

pour une constante $c \in \mathbb{R}$.

(a) Si w_1, \ldots, w_n sont linéairement indépendants, montrer que

$$w_1 \wedge \cdots \wedge w_n = w_1 \wedge \cdots \wedge w_{n-1} \wedge w_n^{\perp},$$

où w_n^{\perp} est la projection orthogonale de w_n dans la direction perpendiculaire à l'hyperplan engendré par w_1, \ldots, w_{n-1} dans \mathbb{R}^n .

- (b) En procédant par induction sur n, montrer que la valeur absolue de la constante c dans l'équation (1) correspond au volume de l'hyper-parallélépipède engendré par w_1, \ldots, w_n .
- (c) En déduire que la valeur absolue du déterminant d'une matrice \mathbf{A} $n \times n$ correspond au volume de l'hyper-parallélépipède engendré par les colonnes de \mathbf{A} .
- 3. Soit $A: V \to W$ une application linéaire. Montrer que

$$(\Lambda^{p+q}A)(\omega \wedge \eta) = (\Lambda^p A)(\omega) \wedge (\Lambda^q A)(\eta)$$

pour $\omega \in \Lambda^p V$ et $\eta \in \Lambda^q V$.

4. En termes de l'opérateur de Hodge sur \mathbb{R}^3 muni du produit scalaire standard et de l'orientation usuelle, montrer que le produit vectoriel est donné par

$$\vec{a} \times \vec{b} = *(\vec{a} \wedge \vec{b}),$$

alors que le produit scalaire est plutôt donné par

$$\vec{a} \cdot \vec{b} = *(\vec{a} \wedge *\vec{b}).$$

- 5. Dans \mathbb{R}^3 , montrer que $\vec{a} \cdot (\vec{b} \times \vec{c}) = *(\vec{a} \wedge \vec{b} \wedge \vec{c})$. Montrer que cela correspond au déterminant de la matrice ayant pour colonnes \vec{a} , \vec{b} et \vec{c} .
- 6. Soit \mathbb{R}^n avec son produit scalaire usuel et son orientation usuel. Montrer que tout (n-1)vecteur $\alpha \in \Lambda^{n-1}(\mathbb{R}^n)$ est de la forme $\alpha = \alpha_1 \wedge \cdots \wedge \alpha_{n-1}$ pour des vecteurs $\alpha_1, \ldots, \alpha_n \in V$.
 Indice: considérer $*\alpha$.
- 7. Donner une version de la formule

$$\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} - (\vec{a} \cdot \vec{b})\vec{c}$$

en termes du produit extérieur.