Liste d'exercices IV

Semaine du 10 octobre 2022

1. On considère l'équation d'onde $\partial_t^2 f = \kappa \Delta f$ sur le disque $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq R\}$ de rayon R avec condition au bord $f|_{\partial D} = 0$, où κ est une constante strictement positive et $\Delta = \partial_x^2 + \partial_y^2$ est le laplacien sur \mathbb{R}^2 . Trouver l'unique solution à cette équation si initialement en coordonnées polaires, on a que

$$f(r, \theta, 0) = J_0(\frac{\nu_{0,1}r}{R})$$
 et $\frac{\partial}{\partial t}f(r, \theta, 0) = 0$,

où $\nu_{0,1} \approx 2.4048$ est le plus petit zéro de J_0 .

2. Sur le disque $D = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 1\}$ de rayon 1, on considère l'équation d'onde

$$\begin{cases}
\frac{\partial^2 u}{\partial t^2} = \Delta u, & x \in [0, \ell], \quad t \in \mathbb{R}, \\
u|_{\partial D} = 0, & \forall t \text{ (conditions au bords)}.
\end{cases}$$
(1)

Si $0 < \nu_{n,1} < \nu_{n,2} < \cdots < \nu_{n,k} < \cdots$ est la liste des points où la fonction de Bessel J_n s'annule sur $(0, \infty)$, on sait alors qu'en coordonnées polaires, la fonction

$$u_{n,k}(r,\theta,t) := J_n(\nu_{n,k}r)\cos(n\theta)\cos(\nu_{n,k}t)$$

est une solution de l'équation pour chaque n et k. Supposons maintenant qu'on sache que la membrane d'un tambour se déplace selon l'une de ces solutions sans savoir pour quel n et k. On saupoudre alors légèrement la membrane du tambour de sable fin.

(a) Quels sont n et k si le sable s'accumule le long de deux cercles concentriques tels qu'illustrés en pointillé :

(b) Quels sont n et k si le sable s'accumule plutôt le long de l'axe des y tel qu'illustré :

3. Sur la boule $\mathbb{B}:=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1\}$ de rayon 1, On considère l'équation de Laplace

$$\begin{cases}
\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) U = 0 \quad \text{sur } \mathbb{B}; \\
U = z^2 \quad \text{sur } \partial \mathbb{B} \text{ (condition au bord)}.
\end{cases}$$
(2)

Dans les coordonnées sphériques (ρ, θ, ϕ) , trouver une solution de cette équation en vous rappelant que sur $\partial \mathbb{B}$, $\rho = 1$ et donc $z|_{\partial \mathbb{B}} = \rho \cos \theta|_{\partial \mathbb{B}} = \cos \theta$. Les polynômes de Legendre $P_0(z) = 1$, $P_1(z) = z$ et $P_2(z) = \frac{3z^2 - 1}{2}$ pourraient servir.