Liste d'exercices II

Semaine du 12 septembre 2023

- 1. $[dC76, \S 2-2] : 1,2;$
- 2. On considère l'espace vectoriel complexe \mathbb{C}^n muni de son produit hermitien canonique

$$\langle \mathbf{u}, \mathbf{v} \rangle := \overline{\mathbf{u}}^T \mathbf{v} \quad \text{pour } \mathbf{u}, \mathbf{v} \in \mathbb{C}^n,$$

où $\overline{\mathbf{u}}$ signifie qu'on prend le conjugué complexe de \mathbf{u} et \mathbf{u}^T dénote la transposée de \mathbf{u} . Une matrice $n \times n$ avec entrées complexes \mathbf{U} est dite **unitaire** si elle préserve le produit hermitien, c'est-à-dire que

$$\forall \mathbf{u}, \mathbf{v} \in \mathbb{C}^n, \quad \langle \mathbf{U}\mathbf{u}, \mathbf{U}\mathbf{v} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle. \tag{1}$$

- (a) Montrer qu'une matrice \mathbf{U} est unitaire si et seulement si $\overline{\mathbf{U}}^T\mathbf{U} = \mathrm{Id}$ où Id est la matrice identité.
- (b) En utilisant l'identité (1), montrer que les valeurs propres d'une matrice unitaire sont des nombres complexes de norme 1.
- (c) Si $\mathbf{v} \neq 0$ est un vecteur propre de valeur propre λ d'une matrice unitraire \mathbf{U} et que $\langle \mathbf{u}, \mathbf{v} \rangle = 0$, alors montrer que $\langle \mathbf{U}\mathbf{u}, \mathbf{v} \rangle$. En d'autres termes, montrer que \mathbf{U} préserve le complément orthogonale de \mathbf{v} .
- (d) En procédant par induction sur n, montrer que les matrices unitaires sont diagonalisables.
- 3. Soit M une matrice carrée à entrées réelles qui est orthogonale (i.e. c'est une matrice unitaire vue comme une matrice à entrées complexes).
 - (a) Si λ est une valeur propre de \mathbf{M} , montrer que $\overline{\lambda}$ est aussi une valeur propre.
 - (b) Si ${\bf M}$ est une matrice orthogonale 3 par 3 et que sont déterminant est 1, montrer que M possède un vecteur propre de valeur propre 1.
 - (c) Conclure du résultat précédent que M correspond à une rotation autour de l'axe engendré par ce vecteur propre.

Références

[dC76] Manfredo P. do Carmo. Differential geometry of curves and surfaces. Prentice-Hall, Inc., Englewood Cliffs, NJ, 1976.